Skip to main content

Part of the book series: Springer Study Edition ((SSE))

Abstract

The junction of an axonal ending with a nerve cell, a muscle cell, or a glandular cell was first called a synapse by Sherrington (see also Chapter 1, p. 2). At synapses the propagated action potential is transmitted to the next cell. Originally it was wrongly believed that the axon always formed a “gap junction,” that is, was in closest contact with the cell on which it ended so that the propagated impulse could be transmitted without interruption to that cell. However, electrophysiologic and histologic investigations have shown that this form of synapse, which is now called an electrical synapse, is rare. Another type of synapse is far more common, particularly in mammals and thus in man. In this type, the axonal ending when stimulated releases a chemical substance that produces an excitatory or an inhibitory effect at the neighboring cell membrane. This type of synapse is called a chemical synapse. The structure and the function of excitatory and inhibitory chemical synapses will be explained in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General Literature

  • Bennett, M. V. L. (Ed.): Synaptic Transmission and Neuronal Interaction. New York: Raven Press 1974.

    Google Scholar 

  • Curtis, D. R., Johnston, G. A. R.: Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69, 97 (1973).

    Google Scholar 

  • Eccles, J. C.: The Physiology of Synapses. Berlin-Göttingen-Heidelberg-New York: Springer-Verlag 1964.

    Book  Google Scholar 

  • Euler, C. von, Skoglund, S., Söderberg, U. (Eds.): Structure and Function of Inhibitory Neuronal Mechanisms. Oxford: Pergamon Press 1968.

    Google Scholar 

  • Hubbard, J. I.: Microphysiology of vertebrate neuromuscular transmission. Physiol. Rev. 53, 674 (1973).

    PubMed  CAS  Google Scholar 

  • Katz, B.: Nerve, Muscle, and Synapse. New York: McGraw-Hill 1966.

    Google Scholar 

  • Krnjevie, K.: Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54, 418 (1974).

    Google Scholar 

  • Pappas, G. D., Purpura, D. P. (Eds.): Structure and Function of Synapses. New York: Raven Press 1972.

    Google Scholar 

  • Schmidt, R. F.: Presynaptic inhibition in the vertebrate central nervous system. Ergebn. Physiol. 63, 20 (1971).

    Article  PubMed  CAS  Google Scholar 

  • The Synapse. Cold Spring Harbor Symp. Quant. Biol. 40 (1976).

    Google Scholar 

  • Thoenen, H.: Bildung und funktionelle Bedeutung adrenerger Ersatztransmitter. Berlin-Heidelberg-New York: Springer-Verlag 1969.

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schmidt, R.F. (1978). Synaptic Transmission. In: Schmidt, R.F. (eds) Fundamentals of Neurophysiology. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01154-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01154-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08188-3

  • Online ISBN: 978-3-662-01154-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics