Advertisement

Reaktor-Schadensfälle und ihre Konsequenzen

  • Thomas Jaeger

Zusammenfassung

Die Sicherheit eines Kernreaktorsystems hängt in erster Linie von dem kernphysikalischen Entwurf des Systems ab, der darauf hinzielt, dem Reaktor inhärent stabile Betriebscharakteristiken zu verleihen. Inhärente Stabilität bedeutet, daß bei einer Störung des Betriebs durch irgendeinen Einfluß die normalen Betriebsbedingungen allein durch die kernphysikalischen Charakteristiken des Systems automatisch wiederhergestellt werden, ohne daß die Hinzuziehung äußerer Hilfsmittel erforderlich ist. Eine große Zahl der bis jetzt entwickelten Kernreaktor-Typen besitzt die Eigenschaft der inhärenten Stabilität in mehr oder weniger ausgeprägtem Maße. Derzeit liegt jedoch noch nicht genügend Erfahrung für den Entwurf unbedingt zuverlässiger Systeme vor. Um den Reaktor steuern und unzureichende inhärente Stabilitätseigenschaften ergänzen zu können, werden in die Reaktorkonstruktion Kontrollvorrichtungen (Kontrollstäbe) eingebaut. Zusätzlich werden Sicherheitsstäbe und andere Apparaturen vorgesehen, um den Reaktor stillegen zu können, wenn der Betrieb sich gefährlichen Bedingungen nähert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur zu 18

  1. [1]
    Mccullough, C. R., M. M. Mills u. E. Teller: The Safety of Nuclear Reactors. Proceedings of the International Conference on the Peaceful Uses of Atomic Energy Vol. 13: Legal, Administrative, Health and Safety Aspects of Large-Scale Use of Nuclear Energy, S. 79–87. New York: United Nations 1956Google Scholar
  2. [2]
    Mccullouas, C. R.: Safety Aspects’ of Nuclear Reactors. The Geneva Series on the Peaceful Uses of Atomic Energy. Princeton/New York/Toronto/London: D. Van Nostrand 1957Google Scholar
  3. [3]
    Mccullough, C. R.: The Experience in the United States with Reactor Operation and Reactor Safeguards. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. September 1958, Paper No. A/CONF. 15/P/1551Google Scholar
  4. [4]
    Burnett, T. J.: Reactors, Hazard VS Power Level. Nuclear Science and Engineering Vol. 2 (1957) S. 382–393MathSciNetGoogle Scholar
  5. [5]
    Parker, G. W., u. G. E. Creek: The Volatilisation of Fission Products by Melting of Reactor Fuel Plates. ORNL–CF–57–6–87, Juli 1957Google Scholar
  6. [5a]
    Rodgers, S. J., W. A. Mcallister, G. E. Kennedy U. J. W. Mausteller: Release and Distribution of Fission Products from Molten Zirconium-Uranium Assemblies. Annual Meeting of the American Nuclear Society, Gatlinburg, Tennessee, 15.-17. Juni 1959Google Scholar
  7. [6]
    Leonard, B. P., JR.: Hazards Associated with Fission Product Release. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. September 1958, Paper No. A/CONF. 15/P/428Google Scholar
  8. [7]
    United States Department of Commerce, Weather Bureau: Meteorology and Atomic Energy. AECU-3066, Juli 1955Google Scholar
  9. [8]
    United States Atomic Energy Commission: Theoretical Possibilities and Consequences of Major Accidents in Large Nuclear Power Plants. WASH-740, März 1957Google Scholar
  10. [9]
    Kuper, J. B. II., u. F. P. COWAN: Exposure Criteria for Estimating the Consequences of a Catastrophe in a Nuclear Plant. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. September 1958, Paper No. A/CONF. 15/P/430Google Scholar
  11. [10]
    Gomberg, H. J.: A Quantitative Approach to Evaluation of Risk in Locating a Reactor on a Given Site. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. September 1958, Paper No. A/CONF. 15/P/436Google Scholar
  12. [11]
    Siddall, E.: Statistical Analysis of Reactor Safety Standards. Nucleonics Vol. 17 (1959) No. 2, S. 64–69Google Scholar
  13. [12]
    Gray, J. L.: Reconstruction of the NRX-Reactor at Chalk River. The Engineering Journal, Oktober 1953Google Scholar
  14. [13]
    Gilbert, F. W.: Decontamination of the Canadian Reactor. Chemical Engineering Progress Vol. 50 (1954) S. 267–271Google Scholar
  15. [14]
    Hatfield, G. W.: A Reactor Emergency with Resulting Improvement. Mechanical Engineering Vol. 77 (1955) S. 124–126Google Scholar
  16. [15]
    Hurst, D. G., u. A. G. WARD: Canadian Research Reactors. Progress in Nuclear Energy, Series II: Reactors Vol. 1, S. 37–38. London/New York: Pergamon Press 1956Google Scholar
  17. [16]
    Mawson, C. A.: Waste Disposal into the Ground. Proceedings, International Conference on the Peaceful Uses of Atomic Energy Vol. 9: Reactor Technology and Chemical Processing, S. 676–678. New York: United Nations 1956Google Scholar
  18. [17]
    The Windscale Incident. Nuclear Engineering Vol. 2 (November 1957) No. 20, S. 453 —454Google Scholar
  19. [18]
    The Windscale Report: A Summary. Nuclear Engineering Vol. 3 (August 1958) No. 29, S. 338Google Scholar
  20. [19]
    Mclean, A. S., H. J. Dunster, H. Howells U W. L. TEMPLETON: District Surveys Following the Windscale Incident. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. März 1958, Paper No. A/CONF. 15/P/316Google Scholar
  21. [20]
    Cottrell, A. H., et al.: Theory of Annealing Kinetics Applied to the Release of Stored Energy from Irradiated Graphite in Air-Cooled Reactors. Second United Nations International Conference on the Peaceful Uses of Atomic Energy, Genf, 1.-13. September 1958, Paper No. A/CONF. 15/P/2485Google Scholar
  22. [20a]
    Rimmer, D. E.: The Validity of the Constant Activation Energy Model for the Release of Stored Energy in Graphite. AERE-R 3061, August 1959Google Scholar
  23. [21]
    Schultz, M. A.: The Control System. In H. ETHERINGTON (Hrsgb.): Nuclear Engineering Handbook, Section 8–2. New York/Toronto/London: McGraw-Hill 1958Google Scholar
  24. [22]
    Problems of Nuclear Ship Propulsion. Nuclear Engineering Vol. 2 (März 1957 ) No. 12, S. 93–95Google Scholar
  25. [23]
    Mains, R. M.: Shock and Vibration in Naval Reactors. KAPL-M-RMM-2, 31. Oktober 1957Google Scholar
  26. [24]
    Fayram, R. A., A. T. Bierland U. J. D. Randall: Hazards Evaluation for Nuclear Merchant Ships. Advances in Nuclear Engineering Vol. I, S. 470–475. London/New York/Paris: Pergamon Press 1957Google Scholar
  27. [2]
    Leverett, M. C.: Some Views on Aircraft Nuclear Propulsion. Meeting of the Metropolitan Section of the Society of Automotive Engineers, New York, 24. März 1959, Paper No. S. 191Google Scholar
  28. [26]
    Gamertsfelder, C. C.: Safety Aspects of Nuclear-Powered Aircraft. Annual Meeting of the Health Physics Society, Gatlinburg, Tennessee, 17.-20. Juni 1959Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1960

Authors and Affiliations

  • Thomas Jaeger
    • 1
  1. 1.ZehlendorfDeutschland

Personalised recommendations