Skip to main content

Isotopic Tracers for Investigating Hydrological Processes

  • Chapter
Landscape Function and Disturbance in Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 120))

Abstract

The use of natural and anthropogenic isotopic tracers — both stable and radioactive — is a well-developed biogeochemical technique used in evaluating water-borne chemical fluxes (see Broecker and Peng 1982; Fry and Sherr 1984; Rundel et al. 1988; Griffiths 1991). Watersheds in temperate regions have been studied extensively using stable isotopes (oxygen-18 and deuterium) to follow water flow paths (e.g., Dinçer et al. 1970; Sklash and Farvolden 1979; Bottomley et al. 1986; Hooper and Shoemaker 1986; Kennedy et al. 1986; Obradovic and Sklash 1976; Pearce et al. 1986; Sklash et al. 1986; DeWalle et al. 1988; Swistock et al. 1989; Wels et al. 1991). However, there are few examples of simultaneous work tracing the fate of particle-reactive isotopes in snow, and even fewer isotopic applications in watersheds underlain by permafrost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnason B (1969) The exchange of hydrogen isotopes between ice and water in temperate glaciers. Earth Planet Sci Lett 6: 423–430

    Article  CAS  Google Scholar 

  • Baskaran M, Kelley JJ, Naidu AS, Holleman DF (1991) Environmental radiocesium in subarctic and arctic Alaska following Chernobyl. Arctic 44: 346–350

    Google Scholar 

  • Bottomley DJ, Craig D, Johnston LM (1986) Neutralization of acid runoff by groundwater discharge to streams in Canadian Precambrian shield watersheds. J Hydrol 88: 213–234

    Article  CAS  Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the sea. Eldigio Press, Lamont-Doherty Earth Observatory, Palisades, NY

    Google Scholar 

  • Calamari D, Bacci E, Focardi S, Gaggi C, Morosini M, Vighl M (1991) Role of plant biomass in the global partitioning of chlorinated hydrocarbons. Environ Sci Technol 25: 1489–1495

    Article  CAS  Google Scholar 

  • Cooper LW, DeNiro MJ (1989) Depletion of heavy isotopes of oxygen and hydrogen in tissue water of intertidal plants: implications for water economy. Mar Biol 101: 397–400

    Article  CAS  Google Scholar 

  • Cooper LW, DeNiro MJ, Keeley JE (1991a) The relationship between stable oxygen and hydrogen isotope ratios of water in astomatal plants. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society, San Antonio, pp 247–255

    Google Scholar 

  • Cooper LW, Olsen CR, Solomon DK, Larsen IL, Cook RB, Grebmeier JM (1991b) Stable isotopes of oxygen and natural and fallout radionuclides used for tracing runoff during snowmelt in an arctic watershed. Water Resour Res 27: 2171–2179

    Article  Google Scholar 

  • Cooper LW, Solis C, Kane DL, Hinzman LD (1993) Application of oxygen-18 tracer techniques to arctic hydrological processes. Arct Alpine Res 25: 247–255

    Article  Google Scholar 

  • Cooper LW, Grebmeier JM, Larsen IL, Solis C, Olsen CR (1995) Evidence for redistribution of cesium-137 in Alaskan tundra, lake and marine sediments. Sci Total Environ 160 /161: 295–306

    Article  Google Scholar 

  • Cooperative Extension Service U of Alaska (1981) Wild edible and poisonous plants of Alaska. Univ Alaska Cooperative Extension, Fairbanks

    Google Scholar 

  • Cornwell JC (1985) Sediment accumulation rates in an Alaskan arctic lake using a modified 210Pb technique. Can J Fish Aquat Sci 42: 809–814

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133: 1702–1703

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16: 436–468

    Article  Google Scholar 

  • DeWalle DR, Swistock BR, Sharpe WE (1988) Three-component tracer model for stormflow on a small Appalachian forested catchment. J Hydrol 104: 301–310

    Article  CAS  Google Scholar 

  • Dinçer T, Payne BR, Florkowski T, Martinec J, Tongiorgi T (1970) Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res 6: 110–118

    Article  Google Scholar 

  • Evans DW, Alberts JL, Clark RA (1983) Reversible ion-exchange fixation of cesium-137 leading to mobilization from reservoir sediments. Geochim Cosmochim Acta 47: 1041–1049

    Article  CAS  Google Scholar 

  • Everett KR, Marion GM, Kane DL (1989) Seasonal geochemistry of an arctic tundra drainage basin. Holoarct Ecol 12: 279–289

    Google Scholar 

  • Friedman I, Redfield AC, Schoen B, Harris J (1964) The variation of the deuterium content of natural water in the hydrologic cycle. Rev Geophys 2: 177–224

    Article  CAS  Google Scholar 

  • Friedman I, Benson C, Gleason J (1991) Isotopic changes during snow metamorphism. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society, San Antonio, pp 211–221

    Google Scholar 

  • Fry B, Sherr EB (1984) S13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contrib Mar Sci 27: 13–47

    CAS  Google Scholar 

  • Gat J (1971) Comments on the stable isotope method in regional groundwater investigation. Water Resour Res 7: 980–993

    Article  CAS  Google Scholar 

  • Goel PS, Narasappaya N, Prabhakara C, Thor R, Zutshi PK (1959) Study of cosmic ray produced short-lived P32, P33, Be’, and S35 in tropical latitudes. Tellus 11: 91–100

    Article  CAS  Google Scholar 

  • Grebmeier JM, Cooper LW, Larsen IL, Solis C, Olsen CR (1993) Cesium-137 inventories in Alaskan tundra, lake and marine sediments: an indicator of recent organic material transport? In: Applications of isotope techniques in studying past and current environmental changes in the hydrosphere and the atmosphere. International Atomic Energy Agency, Vienna, pp 147–159

    Google Scholar 

  • Griffiths H (1991) Applications of stable isotope technology in physiological ecology. Funct Ecol 5: 254–269

    Article  Google Scholar 

  • Hermanson MH (1990) 210Pb and “’Cs chronology of sediments from small, shallow Arctic lakes. Geochim Cosmochim Acta 54: 1443–1451

    Article  CAS  Google Scholar 

  • Herrmann A, Lehrer M, Stichler W (1981) Isotope input into runoff systems from melting snow covers. Nordic Hydrol 12: 309–318

    CAS  Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrological and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19: 95–110

    Article  Google Scholar 

  • Hooper RP, Shoemaker CA (1986) A comparison of chemical and isotopic hydrograph separation. Water Resour Res 22: 1444–1454

    Article  CAS  Google Scholar 

  • Hörnmann PK (1978) Beryllium. In: Wedepohl KH (ed) Handbook of geochemistry. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hutchison-Benson E, Svoboda J, Taylor HW (1985) The latitudinal inventory of 1“Cs in vegetation and topsoil in northern Canada, 1980. Can J Bot 63: 784–791

    CAS  Google Scholar 

  • Ingraham NL, Taylor BE (1989) The effect of snowmelt on the hydrogen isotope ratios of creek discharge in Surprise Valley, California. J Hydrol 106: 233–244

    Google Scholar 

  • Jouzel J, Souchez RA (1982) Melting-freezing at the glacier sole and the isotopic composition of the ice. J Glaciol 28: 35–42

    Google Scholar 

  • Kane DL, Hinzman LD, Benson CS, Everett KR (1989) Hydrology of Imnavait Creek, an arctic watershed. Holoarct Ecol 12: 262–269

    Google Scholar 

  • Kane DL, Hinzman LD, Benson CD, Liston GE (1991) Snow hydrology of a headwater arctic basin 1. Physical measurements and process studies. Water Resour Res 27: 1099–1109

    Google Scholar 

  • Kennedy VC, Kendall C, Zellweger GW, Wyerman TA, Avanzino RJ (1986) Determination of the components of storm-flow using water chemistry and environmental isotopes, Mattole Basin. California. J Hydrol 84: 107–140

    Google Scholar 

  • Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301

    Article  CAS  Google Scholar 

  • Krishnaswami S, Benninger LK, Aller RC, Van Damme KL (1980) Atmospherically derived radionuclides as tracers of sediment mixing and accumulation in near-shore marine and lake sediments. Earth Planet Sci Lett 47: 307–318

    Article  CAS  Google Scholar 

  • Lal D, Peters B (1967) Cosmic ray produced radioactivity on earth. Handb Physik 46: 551612

    Google Scholar 

  • Lawrence JR (1987) Use of contrasting D/H ratios of snows and groundwaters of eastern New York State in watershed evaluation. Water Resour Res 23: 519–521

    Article  CAS  Google Scholar 

  • McCauley LL (1991) The Arctic Research Consortium of the United States: creating a synergy for the Arctic. Arct Res U. S. 5: 17–25

    Google Scholar 

  • Martinec J, Siegenthaler U, Oeschger H, Tongiorgi E (1974) New insights into the run-off mechanism by environmental isotopes. In: Isotope techniques in groundwater hydrology. Proc Symp, International Atomic Energy Agency, Vienna

    Google Scholar 

  • Obradovic MM, Sklash MG (1986) An isotopic and geochemical study of snowmelt runoff in a small arctic watershed. Hydrol Processes 1: 15–30

    Article  Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Nature 361: 520–523

    Article  Google Scholar 

  • Olsen CR, Larsen IL, Lowry PD, Cutshall NH, Todd JF, Wong GTF, Casey WH (1985) Atmospheric fluxes and marsh-soil inventories of ‘Be and 210Pb. J Geophys Res 90: 10487–10495

    Article  Google Scholar 

  • Olsen CR, Thein M, Larsen IL, Lowry PD, Mulholland PJ, Cutshall NH, Byrd JT, Windom HL (1989) Plutonium, lead-210, and carbon isotopes in the Savannah Estuary: riverborne versus marine sources. Environ Sci Technol 23: 1475–1481

    Article  CAS  Google Scholar 

  • Oswood MW, Everett KR, Schell DM (1989) Some physical and chemical characteristics of an arctic beaded stream. Holoarct Ecol 12: 290–303

    Google Scholar 

  • Pearce AJ, Stewart MK, Sklash MG (1986) Storm runoff generation in humid headwater catchments, I. Where does the water come from? Water Resour Res 22: 1263–1272

    Article  Google Scholar 

  • Persson C, Rodhe H, De Geer L-E (1987) The Chernobyl accident: a meteorological analysis of how raionuclides reached and were deposited in Sweden. Ambio 16: 20–31

    CAS  Google Scholar 

  • Peters B (1959) Cosmic ray produced radioactive isotopes as tracers for studying large-scale atmospheric circulation. J Atmos Terr Phys 13: 351–370

    Article  Google Scholar 

  • Ritchie JC, McHenry JR (1990) Application of radioactive fallout Cesium-137 for measuring soil erosion and sediment accumulation rates and patterns: a review. J Environ Qual 19: 215–233

    Article  CAS  Google Scholar 

  • Robbins JA (1978) Geochemical and geophysical applications of radioactive lead. In: Nriagu JO (ed) Biogeochemistry of lead in the environment. Elsevier, New York, pp 285–293

    Google Scholar 

  • Rodhe A (1981) Spring flood: meltwater or groundwater? Nordic Hydrol 12: 21–30

    Google Scholar 

  • Run del PW, Ehleringer JR, Nagy KA (1988) Stable isotopes in ecological research. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Siegenthaler U (1979) Stable hydrogen and oxygen isotopes in the water cycle. In: Jäger E, Hunziker JC (eds) Lectures in isotope geology. Springer, Berlin Heidelberg New York, pp 264–273

    Chapter  Google Scholar 

  • Sklash MG, Farvolden RN (1979) The role of groundwater in storm runoff. J Hydrol 43: 45–65

    Article  CAS  Google Scholar 

  • Sklash MG, Farvolden RN, Fritz P (1976) A conceptual model of watershed response to rainfall developed through the use of oxygen-18 as a natural tracer. Can J Earth Sci 13: 271–283

    Article  Google Scholar 

  • Sommerfield RA, Judy C, Friedman I (1991) Isotopic changes during the formation of depth hoar in experimental snowpacks. In: Taylor HP, O’Neil JR, Kaplan IR (eds) Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society, San Antonio, pp 205–211

    Google Scholar 

  • Souchez RA, Jouzel J (1984) On the isotopic composition in SD and 8180 of water and ice during freezing. J Glaciol 30: 369–372

    CAS  Google Scholar 

  • Stichler W, Rauert W, Martinec J (1981) Environmental isotope studies of an alpine snowpack. Nordic Hydrol 12: 297–308

    Google Scholar 

  • Stockbridge FB (1986) Chernobyl: the consequences in Europe. Ambio 15: 332–334

    Google Scholar 

  • Swistock BR, DeWalle DR, Sharpe WE (1989) Sources of acidic storm flow in an Appalachian headwater stream. Water Resour Res 25: 2139–2147

    Article  CAS  Google Scholar 

  • Taylor HW, Hutchison-Benson E, Svoboda J (1985) Search for latitudinal trends in the effective half-life of fallout 137, in vegetation of the Canadian Arctic. Can J Bot 63: 792–796

    CAS  Google Scholar 

  • Taylor HW, Svoboda J, Henry GHR, Wein RW (1988) Post-Chernobyl 134Cs and ‘37Cs levels at some localities in northern Canada. Arctic 41: 293–296

    Google Scholar 

  • Wels C, Taylor CH, Cornett RJ, Lazerte BD (1991) Streamflow generation in a headwater basin on the Precambrian shield. Hydrol Processes 5: 185–199

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cooper, L.W. et al. (1996). Isotopic Tracers for Investigating Hydrological Processes. In: Reynolds, J.F., Tenhunen, J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01145-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01145-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01147-8

  • Online ISBN: 978-3-662-01145-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics