Skip to main content

Road-Related Disturbances in an Arctic Watershed: Analyses by a Spatially Explicit Model of Vegetation and Ecosystem Processes

  • Chapter
Landscape Function and Disturbance in Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 120))

Abstract

Landscape models have proven very useful in assessing historical change in vegetation patterns, for predicting the impacts of human disturbance on ecosystems, and for developing strategies to manage natural resources (e.g., Shugart 1984; Turner 1987; Costanza et al. 1990; Turner and Dale 1991; Wu and Levin 1994). Landscape models may implicitly or explicitly consider the spatial heterogeneity of system properties such as plant biomass, soil nutrient concentration, and topography — defined by either qualitative indices (e.g., patchiness, diversity, contagion) and/or quantitative indices (e.g., autocorrelation, variance, trend) (Li and Reynolds 1995). Accounting for such spatial heterogeneity has been shown to be essential for modeling ecosystem response to disturbance (Turner 1989; Costanza et al. 1990; Turner and Dale 1991; DeAngelis and White 1994). Although the use of simplified, aggregate models to represent vegetation and ecosystem processes (particularly at the scale of a landscape) has inherent dangers (Bonan 1993), the questions posed by resource managers require the development of models that summarize our “state-of-the-art” ecological knowledge and realistically represent the dynamic function of ecosystems in time and space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Binkley D, Vitousek P (1989) Soil nutrient availability In: Pearcy RW, Ehleringer J, Monney HA, Rundel PW (eds) Plant physiological ecology: field methods and instrumentation. Chapman and Hall, London, pp 75–96

    Google Scholar 

  • Bonan GB (1993) Do biophysics and physiology matter in ecosystem models? Climate Change 24: 281–285

    Article  Google Scholar 

  • Brown DG (1994) Predicting vegetation types at treeline using topography and biophysical distubance variables. J Veg Sci 5: 641–656

    Article  Google Scholar 

  • Burt TP, Butcher DP (1985) Topographic controls of soil moisture distributions. J Soil sci 36: 469–486

    Article  Google Scholar 

  • Chapin FS III (1989) The cost of tundra plant structures: evaluation of concepts and currencies. Am Nat 133: 1–19

    Article  Google Scholar 

  • Chapin FS III, Fetcher N, Kielland K, Everett K, Linkins AE (1988) Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing soil water. Ecology 69: 693–702

    Article  Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153

    Article  CAS  Google Scholar 

  • Costanza R, Sklar FH, White ML (1990) Modeling coastal landscape dynamics. BioScience 40: 91–107

    Article  Google Scholar 

  • DeAngelis DL, White PS (1994) Ecosystems as products of spatially and temporally varying forces, ecological processes, and landscapes: a theoretical perspective. In: Davis SM, Ogden JC (eds) Everglades: the ecosystem and its restoration. St Lucie Press, Delray Beach, pp 9–27

    Google Scholar 

  • Fortin M-J, Drapeau P, Legendre P (1989) Spatial autocorrelation and sampling design in plant ecology. Vegetatio 83: 209–222

    Article  Google Scholar 

  • Giblin, AE, Nadelhoffer K, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61: 415–435

    Article  Google Scholar 

  • Harley PC, Tenhunen JD, Murray KJ, Beyers J (1989) Irradiance and temperature effects on photosynthesis of tussock tundra Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79: 251–259

    Article  Google Scholar 

  • Hastings SJ, Luchessa SA, Oechel W, Tenhunen JD (1989) Standing biomass and production in water drainages of the foothills of the Philip Smith Mountains, Alaska. Holarct Ecol 12: 304–311

    Google Scholar 

  • Hatfield JL, Asrar G, Kanemasu ET (1984) Intercepted photosynthetically active radiation estimated by spectral reflectance. Remote Sens Envir on 14: 65–75

    Article  Google Scholar 

  • Kielland K, Chapin FS III (1992) Nutrient absorption and accumulation in arctic plants. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 321–336

    Google Scholar 

  • Leadley PW, Reymolds JF (1992) Long-term response of an arctic sedge to climate change: a simulation study. Ecol Appl 2: 323–340

    Article  Google Scholar 

  • Leadley PW, Reynolds JF, Chapin FS III (1996) A model of ammonium, nitrate, and glycine uptake by Eriophorum vaginatum roots in the field: ecological implications (submitted)

    Google Scholar 

  • Li H, Reynolds JF (1993) A new contagion index to quantify spatial patterns of landscapes. Landscape Ecol 8 (3): 155–162

    Article  Google Scholar 

  • Li H, Reynolds JF (1995) On definition and quantification of heterogeneity. Oikos 73 (2): 280–284

    Article  Google Scholar 

  • McGuire AD, Melillo JM, Joyce LA, Kicklighter DW, Grace AL, Moore B III, Vorosmarty CJ (1992) Interactions between carbon and nitrogen dynamics in estimating net primary productivity for potential vegetation in North America. Global Biogeochem Cycles 6: 101–124

    Article  CAS  Google Scholar 

  • Meininger CA, Spatt CD (1988) Variations of tardigrade assemblages in dust-impacted arctic mosses. Arct Alp Res 20: 24–30

    Article  Google Scholar 

  • Monteith JL (1981) Does light limit crop production? In: Johnson CB (ed) Physiological processes limiting plant productivity, Butterworths, London, pp 23–38

    Google Scholar 

  • Murray KJ, Tenhunen JD, Kummerow J (1989) Limitations on moss growth and net primary production in tussock tundra areas of the foothills of the Philip Smith Mountains, Alaska. Oecologia 20: 256–262

    Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Linkins Ae (1992) Microbial processes and plant nutrient availability in arctic soils. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 281–300

    Google Scholar 

  • Oberbauer SF, Dawson TE (1992) Water relations of arctic vascular plants. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 259–280

    Google Scholar 

  • Ostendorf B, Reynolds JF (1993) Relationships between a terrain-based hydrologic model and patch-scale vegetation patterns in an arctic tundra landscape. Landscape Ecol 8: 229–237

    Article  Google Scholar 

  • Ostendorf B, Reynolds JF (1996) A model of arctic tundra vegetation derived from topographic gradients (submitted)

    Google Scholar 

  • Quinn P, Seven K, Chevallier P, Planchon O (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Proc 5: 59–79

    Article  Google Scholar 

  • Reich JW, Rastetter EB, Melillo JM, Kicklighter DW, Steudler PA, Peterson BJ, Grace AL, Moore B III, Vörösmarty CJ (1991) Potential net primary productivity in South America: application of a global model. Ecol Appl 14: 399–429

    Article  Google Scholar 

  • Reynolds JF, Leadley PW (1992) Modeling the response of arctic plants to changing climate. In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego pp 413–440

    Google Scholar 

  • Romme WH (1982) Fire and landscape diversity in subalpine forests of Yellowstone National Park. Ecol Monogr 52: 199–221

    Article  Google Scholar 

  • Rossi RE, Mulla DJ, Journel AG, Franz EH (1992) Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecol Monogr 62 (2): 277–314

    Article  Google Scholar 

  • Santelmann MV, Gorham E (1988) The influence of airborne road dust on the chemistry of Sphagnum mosses. J Ecol 76: 1219–1231

    Article  CAS  Google Scholar 

  • Sellers PJ (1987) Canopy reflectance, photosynthesis, transpiration: the role of biophysics in the linearity of their interdependence. Remote Sens Environ 21: 143–183

    Article  Google Scholar 

  • Shaver GR, Chapin FS III (1980) Response to fertilization by various plant growth forms in an Alaskan tundra: nutrient accumulation and growth. Ecology 61: 662–675

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FS III (1991) Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61: 1–31

    Article  Google Scholar 

  • Shaver GR, Chapin FS III, Gartner BL (1986) Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74: 257–278

    Article  Google Scholar 

  • Shugart HH (1984) A theory of forest dynamics. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Stow D, Burns B, Hope A (1989) Mapping arctic tundra vegetation using digital SPOT/HRV-XS data: a preliminary assessment. Int J Remote Sens 10: 1451–1457

    Article  Google Scholar 

  • Tehnunen JD, Lange OL, Hahn S, Siegwolf R, Oberbauer SF (1992) The ecosystem role of poikilohydric tundra plants In: Chapin FS III, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic Press, San Diego, pp 213–238

    Google Scholar 

  • Turner MG (ed) (1987) Landscape heterogeneity and disturbance. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Turner MG (1989) Landscape ecology: the effect of pattern on process. Annu Rev Ecol Syst 20: 171–197

    Article  Google Scholar 

  • Turner MG, Dale VH (1991) Modeling landscape disturbance. In: Turner MG, Gardner RH (eds) Quantitative methods in landscape ecology. Springer, Berlin Heidelberg New York, pp 323–35

    Google Scholar 

  • Walker DA, Everett KR (1987) Road dust and its environmental impact on Alaskan taiga and tundra. Arct Alp Res 19: 479–489

    Article  Google Scholar 

  • Walker DA, Binnan E, Evans BM, Lederer ND, Nordstrand E, Webber PJ (1989) Terrain, vegetation, landscape evolution of the R4D research site, Brooks Range Foothills, Alaska. Holarct Ecol 12: 238–261

    Google Scholar 

  • Wu J, Levin SA (1994) A spatial patch dynamic modeling approach to pattern and process in an annual grassland. Ecol Monogr 64: 447–464

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leadley, P.W., Li, H., Ostendorf, B., Reynolds, J.F. (1996). Road-Related Disturbances in an Arctic Watershed: Analyses by a Spatially Explicit Model of Vegetation and Ecosystem Processes. In: Reynolds, J.F., Tenhunen, J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01145-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01145-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01147-8

  • Online ISBN: 978-3-662-01145-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics