Control of Tundra Methane Emission by Microbial Oxidation

  • S. C. Whalen
  • W. S. Reeburgh
  • C. E. Reimers
Part of the Ecological Studies book series (ECOLSTUD, volume 120)


The recent global increase of 1% per year in the concentration of atmospheric methane (CH4) is well documented (Rasmussen and Khalil 1984; Steele et al. 1987; Blake and Rowland 1989). This increase causes concern because CH4 is an important trace gas in the earth’s atmosphere. Greenhouse warming from CH4 is 25% of CO2-induced warming, and together these gases account for 75% of the radiative trapping from atmospheric gases (Rodhe 1990).


Water Table Depth Methane Flux Arctic Tundra Global Biogeochem Cycle Thaw Depth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JM, Faure H, Faure-Denard L, McGlade JM, Woodward FI (1990) Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348: 711–714CrossRefGoogle Scholar
  2. Ahlgren G (1987) Temperature functions in biology and their application to algal growth constants. Oikos 49: 177–190CrossRefGoogle Scholar
  3. Aselmann I, Crutzen PJ (1989) Global distribution of natural freshwater wetlands and rice paddies: their net primary productivity seasonality and possible methane emissions. J Atmos Chem 8: 307–358CrossRefGoogle Scholar
  4. Bedard C, Knowles R (1989) Physiology biochemistry and specific inhibitors of CH4, NH4+ and CO oxidation by methylotrophs and nitrifiers. Microbiol Rev 53: 68–84Google Scholar
  5. Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat Sci Rev 6: 165–177Google Scholar
  6. Blake DR, Rowland FS (1989) Continuing worldwide increase in tropospheric methane, 19781987. Science 239: 1129–1131CrossRefGoogle Scholar
  7. Bliss LC (1975) Devon Island. In: Rosswall T, Heal OW (eds) Structure and function of tundra ecosystems. Swed Natl Res Counc, Stockholm. Ecol Bull 20: 17–60Google Scholar
  8. Bliss LC, Heal OW, Moore JJ (1981) Tundra ecosystems: a comparative analysis. Cambridge Univ Press, CambridgeGoogle Scholar
  9. Broecker WS, Peng T-H (1974) Gas exchange rates between air and sea. Tellus 26: 21–35CrossRefGoogle Scholar
  10. Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (1992) Arctic ecosystems in a changing climate. Academic Press, San DiegoGoogle Scholar
  11. Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochem Cycles 2: 299–327CrossRefGoogle Scholar
  12. Cicerone RJ, Shetter JD (1981) Sources of atmospheric methane: measurements in rice paddies and a discussion. J Geophys Res 86: 7203–7209CrossRefGoogle Scholar
  13. Clymo RS (1983) Peat. In: Gore AJP (ed) Mires: swamp, bog, fen and moor. Elsevier, New York, pp 159–224Google Scholar
  14. Crill PM, Bartlett KB, Harriss RC, Gorham E, Verry ES, Sebacher DI, Mazdar L, Sanner W (1988) Methane flux from Minnesota peatlands. Global Biogeochem Cycles 3: 371–384CrossRefGoogle Scholar
  15. Farrish KW, Grigal DF (1988) Decomposition in an ombrotrophic bog and a minerotrophic fen in Minnesota. Soil Sci 145: 353–358CrossRefGoogle Scholar
  16. Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment ( Lake Constance ). FEMS Microbiol Ecol 73: 149–158Google Scholar
  17. Fung I, John J, Lerner J, Matthews E, Prather M, Steele LP, Fraser PJ (1991) Three-dimensional model synthesis of the global methane cycle. J Geophys Res 96: 13,033–13, 065Google Scholar
  18. Gorham E (1991) The role of subarctic and boreal peatlands in the global carbon cycle and their probable responses to “greenhouse” climate warming. Ecol Appl 1: 182–195CrossRefGoogle Scholar
  19. Grotch SL (1988) Regional intercomparison of general circulation models, predictions and historical climate data. US Dept Energy (DOE/NBB-0084 TR 041), Washington DCGoogle Scholar
  20. Hanson RS (1980) Ecology and diversity of methylotrophic organisms. Adv Appl Microbiol 26: 3–39CrossRefGoogle Scholar
  21. Hesslein RH (1976) An in situ sampler for close-interval interstitial water studies. Limnol Oceanogr 21: 912–914CrossRefGoogle Scholar
  22. Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan Arctic. Cold Reg Sci Technol 19: 95–110CrossRefGoogle Scholar
  23. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO, emissions from soils in response to global warming. Nature 351: 304–306CrossRefGoogle Scholar
  24. Jφrgensen L, Degn H (1983) Mass spectrometric measurements of methane and oxygen utilization by methanotrophic bacteria. FEMS Microbiol Ecol 20: 331–335CrossRefGoogle Scholar
  25. Khalil MAK, Rasmussen RA (1989) Climate-induced feedbacks for global cycles of methane and nitrous oxide. Tellus 41 (B): 554–559Google Scholar
  26. King GM (1990) Dynamics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol Ecol 74: 309–324Google Scholar
  27. King GM, Roslev P, Skovgaard H (1990) Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl Environ Microbiol 56: 2902–2911Google Scholar
  28. Kling GW, Kipphut GW, Miller MC (1991) Arctic lakes and streams as gas conduits to the atmosphere: implications for tundra carbon budgets. Science 251: 298–301CrossRefGoogle Scholar
  29. Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE (1988) Methane cycling in the sediments of Lake Washington. Limnol Oceanogr 33: 571–581CrossRefGoogle Scholar
  30. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan arctic. Science 234: 689–696CrossRefGoogle Scholar
  31. Lashof DA (1989) The dynamic greenhouse: feedback processes that may influence future concentrations of atmospheric trace gases and climate change. Clim Change 14: 213–242CrossRefGoogle Scholar
  32. Lidstrom ME, Somers L (1984) Seasonal studies of methane oxidation in Lake Washington. Appl Environ Microbiol 47: 1255–1260Google Scholar
  33. Matson PA, Vitousek PM, Schimel DS (1989) Regional extrapolation of trace gas flux based on soils and ecosystems. In: Andreae MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York, pp 97–108Google Scholar
  34. Matthews E, Fung 1(1987) Methane emission from natural wetlands: global distribution area and environmental characteristics of sources. Global Biogeochem Cycles 1: 61–86Google Scholar
  35. Mitchell JFB (1989) The greenhouse effect and climate. Rev Geophys 27: 115–139CrossRefGoogle Scholar
  36. Mooney HS, Vitousek PM, Matson PA (1987) Exchange of material between terrestrial ecosystems and the atmosphere. Science 238: 926–932CrossRefGoogle Scholar
  37. Moore TR, Knowles R (1989) The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can J Soil Sci 69: 33–38CrossRefGoogle Scholar
  38. Moore TR, Roulet N, Knowles R (1990) Spatial and temporal variations of methane flux from subarctic/northern boreal forest fens. Global Biogeochem Cycles 4: 29–46CrossRefGoogle Scholar
  39. Oremland RS (1988) Biogeochemistry of methanogenic bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 641–706Google Scholar
  40. Post WM (1990) Report of a workshop on climate feedbacks and the role of peatlands, tundra and boreal ecosystems in the global carbon cycle. Oak Ridge National Laboratory (ORNL/TM11457), Oak Ridge, TennesseeGoogle Scholar
  41. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298: 156–159CrossRefGoogle Scholar
  42. Rasmussen RA, Khalil MAK (1984) Atmospheric methane in recent and ancient atmospheres: concentrations, trends and the interhemispheric gradient. J Geophys Res 89(D7): 1159911605Google Scholar
  43. Reeburgh WS, Whalen SC (1992) High latitude ecosystems as CH, sources. Ecol Bull (Copenhagen) 42: 62–70Google Scholar
  44. Remsen CC, Minnich EH, Stephens RS, Buchholz L, Lidstrom ME (1989) Methane oxidation in Lake Superior sediments. J Great Lakes Res 15: 141–146CrossRefGoogle Scholar
  45. Revsbech NP, Ward DM (1983) Oxygen microelectrode that is insensitive to medium composition: use in an acid microbial mat dominated by Cyanidium calderium. Appl Environ Microbiol 45: 755–759Google Scholar
  46. Rieger S (1975) Arctic soils. In: Ives JD, Barry RG (eds) Arctic and alpine environments. Methuen, London, pp 749–769Google Scholar
  47. Rodhe H (1990) A comparison of the contribution of various gases to the greenhouse effect. Science 248: 1217–1219CrossRefGoogle Scholar
  48. Schumacher MM (1983) Landfill methane recovery. Noyes Data Corp, Park Ridge, New Jersey Sebacher DI, Harriss RC, Bartlett KB (1985) Methane emission to the atmosphere through aquatic plants. J Environ Qual 14: 40–46Google Scholar
  49. Sebacher DI, Harriss RC, Bartlett KB, Sebacher SM, Grice SS (1986) Atmospheric methane sources: Alaskan tundra, an alpine fen and a subarctic boreal marsh. Tellus 38 (B): 1–10Google Scholar
  50. Seiler W, Holzapfel-Pschorn A, Conrad R, Scharfee D (1984) Methane emission from rice paddies. J Atmos Chem 1: 241–268CrossRefGoogle Scholar
  51. Steele LP, Fraser PJ, Rasmussen RA, Khalil MAK, Conway TJ, Crawford AJ, Gammon RH, Masarie KA, Thoning KW (1987) The global distribution of methane in the troposphere. J Atmos Chem 5: 125–171CrossRefGoogle Scholar
  52. Tenhunen JD, Gillespie CT, Oberbauer SF, Sala A, Whalen SC (1995) Climate effects on the carbon balance of tussock tundra in the Philip Smith Mountains, Alaska. Flora 190: 273–283Google Scholar
  53. Tieszen LL (1978) Vegetation and production ecology of an Alaskan arctic tundra. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  54. Topp E, Hanson RS (1991) Metabolism of radiatively important trace gases by methane-oxidizing bacteria. In: Rogers JE, Whitman WB (eds) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides and halomethanes. Am Soc Microbiol, Washington DC, PP 71–90Google Scholar
  55. Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (1986) Forest ecosystems in the Alaskan taiga. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  56. Whalen SC, Reeburgh WS (1988) A methane flux time series for tundra environment. Global Biogeochem Cycles 2: 399–409CrossRefGoogle Scholar
  57. Whalen SC, Reeburgh WS (1990a) A methane flux transect along the trans-Alaska pipeline haul road. Tellus 42 (B): 237–249CrossRefGoogle Scholar
  58. Whalen SC, Reeburgh WS (1990b) Consumption of atmospheric methane by tundra soils. Nature 346: 160–162CrossRefGoogle Scholar
  59. Whalen SC, Reeburgh WS (1992) Interannual variations in tundra methane emission: a 4-year time series at fixed sites. Global Biogeochem Cycles 6: 139–152CrossRefGoogle Scholar
  60. Whalen SC, Reeburgh WS, Sandbeck KA (1990) Rapid methane oxidation in a landfill cover soil. Appl Environ Microbiol 56: 3405–3411Google Scholar
  61. Whalen SC, Reeburgh WS, Kizer KS (1991) Methane consumption and emission by taiga. Global Biogeochem Cycles 5: 261–273CrossRefGoogle Scholar
  62. Wigley TML, Raper SCB (1990) Natural variability of the climate system and detection of the greenhouse effect. Nature 344: 324–327CrossRefGoogle Scholar
  63. Williams RT, Crawford RL (1983) Microbial diversity in Minnesota peatlands. Microbiol Ecol 9: 201–214CrossRefGoogle Scholar
  64. Yavitt JB, Lang GE, Downey DM (1988) Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountains, United States. Global Biogeochem Cycles 2: 253–268Google Scholar
  65. Yavitt JB, Downey DM, Lang GE, Sexstone AJ (1990) Methane consumption in two temperate forest soils. Biogeochemistry 9: 39–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1996

Authors and Affiliations

  • S. C. Whalen
  • W. S. Reeburgh
  • C. E. Reimers

There are no affiliations available

Personalised recommendations