Skip to main content

Nutrient Availability and Uptake by Tundra Plants

  • Chapter
Landscape Function and Disturbance in Arctic Tundra

Part of the book series: Ecological Studies ((ECOLSTUD,volume 120))

Abstract

Although tundra in the Imnavait Creek watershed is exposed to low temperature, a short growing season, and in many cases, anaerobic soils (see Chaps. 4, 6, and 11, this Vol.), nutrient availability is the factor that most strongly limits plant growth and productivity (Billings et al. 1984; Chapin and Shaver 1985). Nitrogen (N) is the most common limiting element in tundra communities (Barsdate and Alexander 1975), but phosphorus (P) may be either a sole or co-limiting nutrient (McKendrick et al. 1980; Shaver and Chapin 1986). Nitrogen fixation is slow (Alexander and Schell 1973), decomposition and mineralization are limited by cold soils (Nadelhoffer et al. 1991), and N and P immobilization are rapid (Kielland 1990), suggesting that competition from soil microorganisms may limit nutrient availability to plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander V, Schell DM (1973) Seasonal and spatial variation on nitrogen fixation in the Barrow, Alaska, tundra. Arct Alp Res 5: 77–88

    Google Scholar 

  • Bääth E, Frostegärd A, Fritze H (1992) Soil bacterial biomass, activity, phospholipid fatty acid pattern, and pH tolerance in an area polluted with alkaline dust deposition. Appl Environ Microbiol 58: 4026–4031

    Google Scholar 

  • Babb TA (1977) High arctic disturbance studies associated with the Devon Island Project. In: Bliss LC (ed) Truelove Lowland, Devon Island, Canada: a high arctic ecosystem. Univ Alberta Press, Edmonton, pp 647–654

    Google Scholar 

  • Barel D, Barsdate RJ (1978) Phosphorus dynamics of wet coastal tundra near Barrow, Alaska. In: Adriano AC, Brisbin I (eds) Environmental chemistry and cycling processes. US DOE Symp Ser. NTIS, Washington, pp 516–537

    Google Scholar 

  • Barsdate RJ, Alexander V (1975) The nitrogen balance of arctic tundra: pathways, rates, and environmental implications. J Environ Qual 4: 111–117

    Article  Google Scholar 

  • Billings WD, Peterson KM, Luken JO, Mortensen DA (1984) Interaction of increasing atmospheric carbon dioxide and soil nitrogen on the carbon balance of tundra microcosms. Oecologia 65: 26–29

    Article  Google Scholar 

  • Bliss LC (1956) A comparison of plant development in microenvironments of arctic and alpine plants. Biol Rev 43: 481–530

    Google Scholar 

  • Bunnell FL, Miller OK, Flanagan PW, Benoit RE (1980) The microflora: composition, biomass, and environmental relations. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem. Dowden, Hutchinson and Ross, Stroudsburg, pp 255–290

    Google Scholar 

  • Challinor JL, Gersper PL (1975) Vehicle perturbation effects upon a tundra soil-plant system. II. Effects on the chemical regime. Soil Sci Soc Am Proc 39: 689–695

    Google Scholar 

  • Chapin FS III (1980) The mineral nutrition of wild plants. Annu Rev Ecol Syst 11: 233–260

    Article  CAS  Google Scholar 

  • Chapin FS III (1983) Direct and indirect effects of temperature on arctic plants. Polar Biol 2: 47–52

    Article  Google Scholar 

  • Chapin FS III, Bloom A (1976) Phosphate absorption: Adaptation of tundra graminoids to a low temperature, low phosphorus environment. Oikos 26: 111–121

    Google Scholar 

  • Chapin FS III, Shaver GR (1981) Changes in soil properties and vegetation following disturbance of Alaskan arctic tundra. J Appl Ecol 18: 605–617

    Article  Google Scholar 

  • Chapin FS III, Shaver GR (1985) Arctic. In: Chabot BF, Mooney HA (eds) Physiological ecology of North American plant communities. Chapman and Hall, New York, pp 16–40

    Chapter  Google Scholar 

  • Chapin FS III, Tryon PR (1982) Phosphate absorption and root respiration of different growth forms from northern Alaska. Holarct Ecol 5: 164–171

    CAS  Google Scholar 

  • Chapin FS III, Barsdate RJ, Barel D (1978) Phosphorus cycling in Alaskan coastal tundra: a hypothesis for the regulation of nutrient cycling. Oikos 31: 189–199

    Article  CAS  Google Scholar 

  • Chapin FS III, Fetcher N, Kielland K, Everett KR, Linkins AE (1988) Productivity and nutrient cycling of Alaskan tundra: enhancement by flowing water. Ecology 69: 693–702

    Article  Google Scholar 

  • Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) (1992) Arctic ecosystems in a changing climate. Academic Press, San Diego

    Google Scholar 

  • Chapin FS III, Moilanen L, Kielland K (1993) Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361: 150–153

    Article  CAS  Google Scholar 

  • Cheng W, Virginia RA (1993) Measurement of microbial biomass in arctic tundra soils using fumigation-extraction and substrate-induced respiration procedures. Soil Biol Biochem 25: 135–141

    Article  Google Scholar 

  • Clarkson DT, Hanson JB (1980) The mineral nutrition of higher plants. Annu Rev Plant Physiol 31: 239–298

    Article  CAS  Google Scholar 

  • Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at sub-zero temperatures. Soil Biol Biochem 27: 1231–1234

    Article  CAS  Google Scholar 

  • Coxson DS, Parkinson D (1987) Winter respiratory activity in aspen woodland forest floor litter and soils. Soil Biol Biochem 19: 49–59

    Article  Google Scholar 

  • DeLuca TH, Keeney DR, McCarty GW (1992) Effect of freeze-thaw events on mineralization of soil nitrogen. Biol Fertil Soils 14: 116–120

    Article  CAS  Google Scholar 

  • Flanagan PW, Bunnell FL (1980) Microflora activities and decomposition. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem. Dowden, Hutchinson and Ross, Stroudsburg, pp 291–334

    Google Scholar 

  • Flanagan PW, Van Cleve K (1977) Microbial biomass, respiration and nutrient cycling in a black spruce taiga ecosystem. Ecol Bull (Stockholm) 25: 261–273

    CAS  Google Scholar 

  • Gersper PL, Alexander V, Barkley SA, Barsdate RJ, Flint PS (1980) The soils and their nutrients. In: Brown J, Miller PC, Tieszen LL, Bunnell FL (eds) An arctic ecosystem. Dowden, Hutchinson and Ross, Stroudsburg, pp 219–254

    Google Scholar 

  • Giblin AE, Nadelhoffer KJ, Shaver GR, Laundre JA, McKerrow AJ (1991) Biogeochemical diversity along a riverside toposequence in arctic Alaska. Ecol Monogr 61: 415–435

    Article  Google Scholar 

  • Hatch AB (1937) The physical basis of mycotrophy in the genus Pinus. Black Rock For Bull 6, 168 pp

    Google Scholar 

  • Hinzman LD, Kane DL, Gieck RE, Everett KR (1991) Hydrologic and thermal properties of the active layer in the Alaskan arctic. Cold Regions Sci Tech 19: 95–110

    Article  Google Scholar 

  • Ivarson KC (1974) Comparative survival and decomposing ability of four fungi isolated from leaf litter at low temperatures. Can J Soil Sci 54: 245–253

    Article  Google Scholar 

  • Jackson LE, Schimel JP, Firestone MK (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol Biochem 21: 409–415

    Article  Google Scholar 

  • Jonasson S, Chapin FS III (1985) Significance of sequential leaf development for nutrient balance of the cotton sedge, Eriophorum vaginatum L. Oecologia 67: 511–518

    Article  Google Scholar 

  • Jonasson S, Chapin FS III (1991) Seasonal uptake and allocation of phosphorus in Eriophorum vaginatum L., measured by labelling with 32P. New Phytol 118: 349–357

    Article  CAS  Google Scholar 

  • Johnson DW, Edwards NT (1979) The effects of stem girdling on biogeochemical cycles within a mixed deciduous forest in eastern Tennessee: II. Soil nitrogen mineralization and nitrification rates. Oecologia 40: 259–271

    Google Scholar 

  • Kielland K (1990) Processes controlling nitrogen release and turnover in arctic tundra. PhD thesis, Univ Alaska, Fairbanks

    Google Scholar 

  • Kielland K, Chapin FS III (1992) Nutrient absorption and accumulation in arctic tundra. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, San Diego, pp 321–335

    Google Scholar 

  • Kummerow J, Russell M (1980) Seasonal root growth in the Arctic tussock tundra. Oecologia 47: 196–199

    Article  Google Scholar 

  • Kummerow J, Ellis BA, Kummerow S, Chapin FS III (1983) Spring growth of shoots and roots in shrubs of an Alaskan muskeg. Am J Bot 70: 1509–1515

    Article  Google Scholar 

  • Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan arctic. Science 234: 689–696

    Article  CAS  Google Scholar 

  • Leadley PW, Reynolds JF, Chapin FS III (1996) A model of ammonium, nitrate, and glycine uptake by Eriophorum vaginatum roots in the field: ecological implications. (submitted)

    Google Scholar 

  • Linkins AE, Melillo JM, Sinsabaugh RL (1984) Factors affecting cellulase activity in terrestrial and aquatic ecosystems. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. Am Soc Microbiol, Washington DC, pp 572–579

    Google Scholar 

  • Marion GM, Black CH (1987) The effect of time and temperature on nitrogen mineralization in arctic tundra soils. Soil Sci Soc Am J 51: 1501–1508

    Article  CAS  Google Scholar 

  • Marion GM, Everett KR (1989) The effect of nutrient and water addition on elemental mobility through small tundra watersheds. Holarct Ecol 12: 317–323

    Google Scholar 

  • Marion GM, Kummerow J (1990) Ammonium uptake by field grown Eriophorum vaginatum under laboratory and simulated field conditions. Holarct Ecol 13: 50–55

    Google Scholar 

  • Marion GM. Miller PC (1982) Nitrogen mineralization in a tussock tundra soil. Arct Alp Res 14: 287–293

    Article  CAS  Google Scholar 

  • Marion GM, Miller PC, Kummerow J, Oechel WC (1982) Competition for nitrogen in a tussock tundra ecosystem. Plant Soil 66: 317–327

    Article  CAS  Google Scholar 

  • Maxwell B (1992) Arctic climate: potential for change under global warming. In: Chapin FS III, Jeffries RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, San Diego, pp 11–34

    Google Scholar 

  • McClaugherty CA, Linkins AE (1990) Temperature responses of enzymes in two forest soils. Soil Biol Biochem 22: 29–33

    Article  CAS  Google Scholar 

  • McKendrick JD, Batzli GO, Everett KR, Swanson JC (1980) Some effects of mammalian herbivores and fertilization on tundra soils and vegetation. Arct Alp Res 12: 565–578

    Article  Google Scholar 

  • Miller PC, Mangan R, Kummerow J (1982) Vertical distribution of organic matter in eight vegetation types near Eagle Summit, Alaska. Holarct Ecol 5: 117–124

    Google Scholar 

  • Myrold DD (1987) Relationship between microbial biomass nitrogen and a nitrogen availability index. Soil Sci Soc Am J 51: 1047–1049

    Article  Google Scholar 

  • Nadelhoffer KJ, Giblin AE, Shaver GR, Laudre JA (1991) Effects of temperature and substrate quality on element mineralization in six arctic soils. Ecology 72: 242–253

    Article  Google Scholar 

  • Oberbauer SF, Hastings SJ, Beyers JL, Oechel WC (1989) Comparative effects of downslope water and nutrient movement on plant nutrition, photosynthesis, and growth in Alaskan tundra. Holarct Ecol 12: 324–334

    Google Scholar 

  • Oechel WC, Van Cleve K (1986) The role of bryophytes in nutrient cycling in the taiga. In: Van Cleve K, Chapin FS III, Flanagan PW, Viereck LA, Dyrness CT (eds) Forest ecosystems in the Alaskan Taiga: a synthesis of structure and function. Springer, Berlin Heidelberg New York, pp 121–137

    Google Scholar 

  • Oechel WC, Hastings SJ, Vourlitis G, Jenkins M, Riechers G, Grulke N (1993) Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source. Science 361: 520–523

    Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Sco Am J 51: 1173–1179

    Article  CAS  Google Scholar 

  • Paul EA, Voroney RP (1984) Field interpretation of microbial biomass activity measurements. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. Am Soc Microbiol, Washington DC, pp 509–514

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experimentia 47: 376–391

    Article  Google Scholar 

  • Schimel JP (1995) Ecosystem consequences of microbial diversity and community structure. In: Chapin FS III, Körner C (eds) Arctic and Alpine biodiversity. Ecological Studies 115. Springer, Berlin Heidelberg New York, pp 239–254

    Google Scholar 

  • Schimel JP, Jackson LE, Firestone MK (1989a) Spatial and temportal effects on plant–microbial competition for inorganic nitrogen in a California annual grassland. Soil Biol Biochem 21: 1059–1066

    Article  CAS  Google Scholar 

  • Schimel JP, Scott W, Killham K (1989b) Changes in cytoplasmic carbon and nitrogen pools in a soil bacterium and a fungus in response to salt stress. Appl Envir Microbiol 55: 1635–1637

    CAS  Google Scholar 

  • Shaver GR, Billings WD (1975) Root production and root turnover in a wet tundra ecosystem, Barrow, Alaska. Ecology 56: 401–409

    Google Scholar 

  • Shaver GR, Billings WD (1977) Effects of day length and temperature on root elongation in tundra graminoids. Oecologia 28: 57–65

    Google Scholar 

  • Shaver GR, Chapin FS III (1986) Effect of fertilizer on production and biomass of tussock tundra, Alaska, USA. Arct Alp Res 18: 261–268

    Google Scholar 

  • Shaver GR, Cutler JD (1979) The vertical distribution of live vascular phytomass in cottongrass tussock tundra. Arct Alp Res 11: 335–342

    Article  Google Scholar 

  • Shaver GR, Chapin FS III, Gartner BL (1986) Factors limiting seasonal growth and peak biomass accumulation in Eriophorum vaginatum in Alaskan tussock tundra. J Ecol 74: 257–278

    Article  Google Scholar 

  • Silberbush M, Barber SA (1983) Prediction of phosphorus and potassium uptake by soybeans with a mechanistic mathematical model. Soil Sci Soc Am J 47: 262–265

    Article  CAS  Google Scholar 

  • Sinsabaugh RL, Linkins AE (1989) Natural disturbance and the activity of Trichoderma viride cellulase complexes. Soil Biol Biochem 21: 835–839

    Article  CAS  Google Scholar 

  • Skogland T, Lomeland S Goksoyr J (1988) Respiratory burst after freezing and thawing of soil: experiments with soil bacteria. Soil Biol Biochem 20: 851–866

    Article  Google Scholar 

  • Smith JL, Paul EA (1986) The role of soil type and vegetation on microbial biomass and activity. In: Megusar F, Ganar M (eds) Perspectives in microbial ecology. Slovene Soc Microbiol, Ljubljana, pp 460–466

    Google Scholar 

  • Smith JL, Norton JM, Paul EA (1989) Decomposition of 14C- and 15 N- labeled organisms in soil under anaerobic conditions. Plant Soil 116: 115–118

    Article  CAS  Google Scholar 

  • Souldes DA, Allison FE (1961) Effect of drying and freezing soils on carbon dioxide production, available mineral nutrients, aggregation, and bacterial population, Soil Sci 91: 291–298

    Article  Google Scholar 

  • Tam T-Y, Mayfield CI, Inniss WE (1983) Microbial decomposition of leaf material at 0°C. Microb Ecol 9: 355–362

    Article  Google Scholar 

  • Taylor BR, Jones HG (1990) Litter decomposition under snow cover in a balsam fir forest. Can J Bot 68: 112–120

    Article  Google Scholar 

  • Taylor BR, Parkinson D (1988) Does repeated freezing and thawing accelerate decay of leaf litter? Soil Biol Biochem 20: 657–665

    Article  Google Scholar 

  • Waring RH, Schlesinger WH (1985) Forest ecosystems. Academic Press, New York

    Google Scholar 

  • Wein RW, Bliss LC (1974) Primary production in arctic cottongrass tussock tundra communities. Arct Alp Res 6: 261–274

    Article  Google Scholar 

  • Whalen SC, Cornwell JC (1985) Nitrogen, phosphorus, and organic carbon cycling in an arctic lake. Can J Fish Aquat Sci 42: 797–808

    Article  CAS  Google Scholar 

  • Widden P, Parkinson D (1978) The effects of temperature on growth of four high arctic soil fungi in a three phase system. Can J Microbiol 24: 415–421

    Article  CAS  Google Scholar 

  • Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM (1990) The vernal dam: plant- microbe competition for nitrogen in northern hardwood forests. Ecology 71: 651–656

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schimel, J.P., Kielland, K., Chapin, F.S. (1996). Nutrient Availability and Uptake by Tundra Plants. In: Reynolds, J.F., Tenhunen, J.D. (eds) Landscape Function and Disturbance in Arctic Tundra. Ecological Studies, vol 120. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01145-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01145-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01147-8

  • Online ISBN: 978-3-662-01145-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics