Advertisement

Amyloid βA4 of Alzheimer’s Disease: Structural Requirements for Folding and Aggregation

  • C. Hilbich
  • B. Kisters-Woike
  • C. L. Masters
  • K. Beyreuther
Part of the Research and Perspectives in Alzheimer’s Disease book series (ALZHEIMER)

Summary

Alzheimer’s disease is known to be the most common cause for a dementia in elderly people. Its specific pathological markers are extracellular protein depositions (i.e., amyloid) in the brain. The main component of this amyloid is “βA4,” a peptide comprising 43 amino acids. It is highly insoluble under physiological conditions and aggregates into dense clusters of filaments. We have used βA4 isolated from amyloid plaque cores as well as synthetic peptides corresponding to the natural βA4 sequence and analogue peptides to determine requirements for aggregation and the secondary structure of βA4. Infrared and circular dichroism spectroscopy of βA4 peptides showed that their secondary structure consists of a β-turn flanked by two strands of β-sheet. Purified βA4 peptides are soluble in water and are precipitated by the addition of salts, suggesting that aggregation depends upon a hydrophobic effect. Accordingly, the substitution of hydrophobic residues led to βA4 variants with reduced amyloidogenicity. Analogues showed lower β-sheet contents after solubilization in water and in the solid state. Although still forming filaments, some variants did not aggregate into the highly condensed depositions that are typical for amyloid; they could also be solubilized in 200 mM NaCl and KCl. When mixed with βA4 peptides bearing the natural sequence, two analogues could inhibit the formation of filaments in vitro. They may open the opportunity for a rational therapy of Alzheimer’s disease.

Keywords

Amyloid Precursor Protein Natural Sequence Amyloid Precursor Protein Gene Random Coil Conformation Cerebrovascular Amyloid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennhold H (1992) Eine spezifische Amyloidfärbung mit Kongorot. Münch Med Wochenschr 69:1537Google Scholar
  2. Carter DA, Desmarais E, Bellis M, Campion D, Clerget-Darpoux F, Brice A, Agid Y, JaillardSerradt A, Mallet J (1992) More missense in amyloid gene: Nature Genet. 2: 255–256PubMedGoogle Scholar
  3. Castaño EM, Frangione B (1988). Biology of disease: human amyloidosis, Alzheimer disease and related disorders. Lab Invest. 58: 122–132PubMedGoogle Scholar
  4. Castaño, EM, Ghiso J, Prelli F, Gorevic PD, Migheli A, Frangione B (1986) In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem Biophys Res Comm 141: 782–789PubMedCrossRefGoogle Scholar
  5. Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases ²-protein production. Nature 360: 672–674PubMedCrossRefGoogle Scholar
  6. Cooper JH (1974). Selective amyloid staining as a function of amyloid composition and structure. Lab Invest 3: 232–238Google Scholar
  7. Divry P, Florkin M (1927) Sur les propriétées optiques de l’amyloide. CR Soc Biol 97: 1808Google Scholar
  8. Esch F, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward P (1990) Cleavage of amyloid ² peptide during constitutive processing of its precursor. Science 248:1122–1124PubMedCrossRefGoogle Scholar
  9. Fraser PE, Duffy LK, O’Malley MB, Nguyen J, Inouye H, Kirschner DA (1991) Morphology and antibody recognition of synthetic β-amyloid peptides. J Neurosci Res 28: 474–485PubMedCrossRefGoogle Scholar
  10. Glenner GG (1980). Amyloid deposits and amyloidosis. New Engl J Med 302: 1283–1292PubMedCrossRefGoogle Scholar
  11. Glenner GG, Wong CW (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Comm 120: 885–890PubMedCrossRefGoogle Scholar
  12. Glenner GG, Wong CW (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Comm 122: 1131–1135PubMedCrossRefGoogle Scholar
  13. Glenner GG, Eanes ED, Page LD (1972) The relation of the properties of Congo red-stained amyloid fibrils to the ²-conformation. J Histochem Cytochem 20: 821–826PubMedCrossRefGoogle Scholar
  14. Gorevic PD, Castaño EM, Sarma R, Frangione B (1987) Ten to fourteen residue peptides of Alzheimer’s disease protein are sufficient for amyloid formation and its characteristic X-ray diffraction pattern. Biochem Biophys Res Comm 147: 854–862PubMedCrossRefGoogle Scholar
  15. Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325PubMedCrossRefGoogle Scholar
  16. Halverson K, Fraser PE, Kirschner DA, Lansbury PT (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic ββ-protein fragments. Biochemistry 29: 2639–2644PubMedCrossRefGoogle Scholar
  17. Hardy J (1992) Framing ²-amyloid. Nature Genet 1: 233–234PubMedCrossRefGoogle Scholar
  18. Hardy J, Allsop D (1991). Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388PubMedCrossRefGoogle Scholar
  19. Hendriks L, van Duijn CM, Cras P, Cruts M, van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin J-J, Hofman A, van Broeckhoven C (1992) Presenile dementia and cerebral hemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet. 1: 218–221PubMedCrossRefGoogle Scholar
  20. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991a). Aggregation and secondary structure of amyloid βA4 protein of Alzheimer’s disease. J Mol Biol 218: 149–163PubMedCrossRefGoogle Scholar
  21. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991b). Human and rodent sequence analogs of Alzheimer’s disease amyloid βA4 share similar properties and can be solubilized in buffers of pH 7.4. Eur J Biochem 201: 61–69PubMedCrossRefGoogle Scholar
  22. Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J Mol Biol 228: 460–473PubMedCrossRefGoogle Scholar
  23. Hollosi M, Otvos L, Kajtar J, Percel A, Lee VM-Y (1989) Is amyloid deposition in Alzheimer’s disease preceded by an environment-induced double conformational transition? Peptide Res 2: 109–113Google Scholar
  24. Joachim CL, Duffy LK, Morris JH, Selkoe DJ (1988) Protein chemical and immunocytochemical studies of meningovascular ²-amyloid protein in Alzheimer’s disease and normal aging. Brain Res 474:100–111PubMedCrossRefGoogle Scholar
  25. Kang J, Lemaire H-G, Unterbeck A, Salbaum J-M, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736PubMedCrossRefGoogle Scholar
  26. Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-² conformation. Proc Natl Acad Sci USA 83: 503–507PubMedCrossRefGoogle Scholar
  27. Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ (1987) Synthetic peptide homologous to ²-protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci USA 84:6953–6957PubMedCrossRefGoogle Scholar
  28. Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Prot Chem 38:181–364CrossRefGoogle Scholar
  29. Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985a) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249PubMedCrossRefGoogle Scholar
  30. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985b) Neuronal origin of cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4: 2757–2763PubMedGoogle Scholar
  31. Mattson MP, Cheng BC, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitoxicity. J Neurosci 12, 376–389PubMedGoogle Scholar
  32. Mori H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid ² protein in Alzheimer’s disease. J Biol Chem 267: 17082–17086PubMedGoogle Scholar
  33. Müller-Hill B, Beyreuther K (1989) Molecular biology of Alzheimer’s disease. Ann Rev Biochem 58:287–307PubMedCrossRefGoogle Scholar
  34. Prelli F, Castaño EM, van Duinen SG, Bots G, Luyendijk W, Frangione B (1988a) Different processing of Alzheimer’s ²-protein precursor in the vessels walls of patients with hereditary cerebral hemorrhage with amyloidosis — Dutch type. Biochem Biophys Res Comm 151: 1150–1155PubMedCrossRefGoogle Scholar
  35. Prelli F, Castaño E, Glenner GG, Frangione B (1988b). Differences between vascular and plaque core amyloid in Alzheimer’s disease. J Neurochem 51: 648–651PubMedCrossRefGoogle Scholar
  36. Puchtler H, Sweat F, Levine M (1962) On the binding of Congo red by amyloid. J Histochem Cytochem 10: 355–364CrossRefGoogle Scholar
  37. Reisberg B (ed) (1983) Alzheimer’s disease, The Free Press, New YorkGoogle Scholar
  38. Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zürcher-Neely HA, Heinrikson RL, Ball MJ, Greenberg BD (1993) Structural alterations in the peptide backbone of ²-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268: 3072–3083PubMedGoogle Scholar
  39. Schlote W (1965) Die Amyloidnatur der kongophilen, drusigen Entartung der Hirnarterien (Scholz) im Senium. Act Neuropathol 4: 449–468CrossRefGoogle Scholar
  40. Selkoe DJ (1989) Biochemistry of altered brain proteins in Alzheimer’s disease. Ann Rev Neurosci 12: 463–490PubMedCrossRefGoogle Scholar
  41. Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498PubMedCrossRefGoogle Scholar
  42. Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher MG, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359: 325–327PubMedCrossRefGoogle Scholar
  43. Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galasko D, Thal LJ, Lieberburg I, Schenk DB (1993) Secretion of ²-amyloid precursor protein cleaved at the amino terminus of the ²-amyloid peptide. Nature 361: 260–263PubMedCrossRefGoogle Scholar
  44. Sisodia S, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that ²-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492–495PubMedCrossRefGoogle Scholar
  45. Spencer RGS, Halverson KJ, Auger M, McDermott AE, Griffin RG, Lansbury PT (1991) An unusual peptide conformation may precipitate amyloid formation in Alzheimer’s disease: application of solid-state NMR to the determination of protein secondary structure. Biochemistry 30:10382–10387PubMedCrossRefGoogle Scholar
  46. Terry RD, Gonatas NK, Weiss M (1964) Ultrastructural studies in Alzheimer’ presenile dementia. Am J Pathol 44: 269–297PubMedGoogle Scholar
  47. Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126PubMedCrossRefGoogle Scholar
  48. Wong CW, Quaranta V, Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer’s disease are antigenically related. Proc Natl Acad Sci USA 82: 8729–8732PubMedCrossRefGoogle Scholar
  49. Yankner B, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250: 279–282PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • C. Hilbich
    • 1
  • B. Kisters-Woike
  • C. L. Masters
  • K. Beyreuther
  1. 1.Center of Molecular BiologyUniversity of HeidelbergHeidelbergGermany

Personalised recommendations