Skip to main content

Amyloid βA4 of Alzheimer’s Disease: Structural Requirements for Folding and Aggregation

  • Conference paper
Amyloid Protein Precursor in Development, Aging and Alzheimer’s Disease

Part of the book series: Research and Perspectives in Alzheimer’s Disease ((ALZHEIMER))

Summary

Alzheimer’s disease is known to be the most common cause for a dementia in elderly people. Its specific pathological markers are extracellular protein depositions (i.e., amyloid) in the brain. The main component of this amyloid is “βA4,” a peptide comprising 43 amino acids. It is highly insoluble under physiological conditions and aggregates into dense clusters of filaments. We have used βA4 isolated from amyloid plaque cores as well as synthetic peptides corresponding to the natural βA4 sequence and analogue peptides to determine requirements for aggregation and the secondary structure of βA4. Infrared and circular dichroism spectroscopy of βA4 peptides showed that their secondary structure consists of a β-turn flanked by two strands of β-sheet. Purified βA4 peptides are soluble in water and are precipitated by the addition of salts, suggesting that aggregation depends upon a hydrophobic effect. Accordingly, the substitution of hydrophobic residues led to βA4 variants with reduced amyloidogenicity. Analogues showed lower β-sheet contents after solubilization in water and in the solid state. Although still forming filaments, some variants did not aggregate into the highly condensed depositions that are typical for amyloid; they could also be solubilized in 200 mM NaCl and KCl. When mixed with βA4 peptides bearing the natural sequence, two analogues could inhibit the formation of filaments in vitro. They may open the opportunity for a rational therapy of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennhold H (1992) Eine spezifische Amyloidfärbung mit Kongorot. Münch Med Wochenschr 69:1537

    Google Scholar 

  • Carter DA, Desmarais E, Bellis M, Campion D, Clerget-Darpoux F, Brice A, Agid Y, JaillardSerradt A, Mallet J (1992) More missense in amyloid gene: Nature Genet. 2: 255–256

    PubMed  CAS  Google Scholar 

  • Castaño EM, Frangione B (1988). Biology of disease: human amyloidosis, Alzheimer disease and related disorders. Lab Invest. 58: 122–132

    PubMed  Google Scholar 

  • Castaño, EM, Ghiso J, Prelli F, Gorevic PD, Migheli A, Frangione B (1986) In vitro formation of amyloid fibrils from two synthetic peptides of different lengths homologous to Alzheimer’s disease β-protein. Biochem Biophys Res Comm 141: 782–789

    Article  PubMed  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases ²-protein production. Nature 360: 672–674

    Article  PubMed  CAS  Google Scholar 

  • Cooper JH (1974). Selective amyloid staining as a function of amyloid composition and structure. Lab Invest 3: 232–238

    Google Scholar 

  • Divry P, Florkin M (1927) Sur les propriétées optiques de l’amyloide. CR Soc Biol 97: 1808

    Google Scholar 

  • Esch F, Keim PS, Beattie EC, Blacher RW, Culwell AR, Oltersdorf T, McClure D, Ward P (1990) Cleavage of amyloid ² peptide during constitutive processing of its precursor. Science 248:1122–1124

    Article  PubMed  CAS  Google Scholar 

  • Fraser PE, Duffy LK, O’Malley MB, Nguyen J, Inouye H, Kirschner DA (1991) Morphology and antibody recognition of synthetic β-amyloid peptides. J Neurosci Res 28: 474–485

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG (1980). Amyloid deposits and amyloidosis. New Engl J Med 302: 1283–1292

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984a) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Comm 120: 885–890

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984b) Alzheimer’s disease and Down’s syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Comm 122: 1131–1135

    Article  PubMed  CAS  Google Scholar 

  • Glenner GG, Eanes ED, Page LD (1972) The relation of the properties of Congo red-stained amyloid fibrils to the ²-conformation. J Histochem Cytochem 20: 821–826

    Article  PubMed  CAS  Google Scholar 

  • Gorevic PD, Castaño EM, Sarma R, Frangione B (1987) Ten to fourteen residue peptides of Alzheimer’s disease protein are sufficient for amyloid formation and its characteristic X-ray diffraction pattern. Biochem Biophys Res Comm 147: 854–862

    Article  PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, Selkoe DJ (1992) Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359: 322–325

    Article  PubMed  CAS  Google Scholar 

  • Halverson K, Fraser PE, Kirschner DA, Lansbury PT (1990) Molecular determinants of amyloid deposition in Alzheimer’s disease: conformational studies of synthetic ββ-protein fragments. Biochemistry 29: 2639–2644

    Article  PubMed  CAS  Google Scholar 

  • Hardy J (1992) Framing ²-amyloid. Nature Genet 1: 233–234

    Article  PubMed  CAS  Google Scholar 

  • Hardy J, Allsop D (1991). Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12: 383–388

    Article  PubMed  CAS  Google Scholar 

  • Hendriks L, van Duijn CM, Cras P, Cruts M, van Hul W, van Harskamp F, Warren A, McInnis MG, Antonarakis SE, Martin J-J, Hofman A, van Broeckhoven C (1992) Presenile dementia and cerebral hemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet. 1: 218–221

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991a). Aggregation and secondary structure of amyloid βA4 protein of Alzheimer’s disease. J Mol Biol 218: 149–163

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1991b). Human and rodent sequence analogs of Alzheimer’s disease amyloid βA4 share similar properties and can be solubilized in buffers of pH 7.4. Eur J Biochem 201: 61–69

    Article  PubMed  CAS  Google Scholar 

  • Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J Mol Biol 228: 460–473

    Article  PubMed  CAS  Google Scholar 

  • Hollosi M, Otvos L, Kajtar J, Percel A, Lee VM-Y (1989) Is amyloid deposition in Alzheimer’s disease preceded by an environment-induced double conformational transition? Peptide Res 2: 109–113

    CAS  Google Scholar 

  • Joachim CL, Duffy LK, Morris JH, Selkoe DJ (1988) Protein chemical and immunocytochemical studies of meningovascular ²-amyloid protein in Alzheimer’s disease and normal aging. Brain Res 474:100–111

    Article  PubMed  CAS  Google Scholar 

  • Kang J, Lemaire H-G, Unterbeck A, Salbaum J-M, Masters CL, Grzeschik K-H, Multhaup G, Beyreuther K, Müller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325: 733–736

    Article  PubMed  CAS  Google Scholar 

  • Kirschner DA, Abraham C, Selkoe DJ (1986) X-ray diffraction from intraneuronal paired helical filaments and extraneuronal amyloid fibers in Alzheimer disease indicates cross-² conformation. Proc Natl Acad Sci USA 83: 503–507

    Article  PubMed  CAS  Google Scholar 

  • Kirschner DA, Inouye H, Duffy LK, Sinclair A, Lind M, Selkoe DJ (1987) Synthetic peptide homologous to ²-protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci USA 84:6953–6957

    Article  PubMed  CAS  Google Scholar 

  • Krimm S, Bandekar J (1986) Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins. Adv Prot Chem 38:181–364

    Article  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985a) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82: 4245–4249

    Article  PubMed  CAS  Google Scholar 

  • Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985b) Neuronal origin of cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4: 2757–2763

    PubMed  CAS  Google Scholar 

  • Mattson MP, Cheng BC, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitoxicity. J Neurosci 12, 376–389

    PubMed  CAS  Google Scholar 

  • Mori H, Takio K, Ogawara M, Selkoe DJ (1992) Mass spectrometry of purified amyloid ² protein in Alzheimer’s disease. J Biol Chem 267: 17082–17086

    PubMed  CAS  Google Scholar 

  • Müller-Hill B, Beyreuther K (1989) Molecular biology of Alzheimer’s disease. Ann Rev Biochem 58:287–307

    Article  PubMed  Google Scholar 

  • Prelli F, Castaño EM, van Duinen SG, Bots G, Luyendijk W, Frangione B (1988a) Different processing of Alzheimer’s ²-protein precursor in the vessels walls of patients with hereditary cerebral hemorrhage with amyloidosis — Dutch type. Biochem Biophys Res Comm 151: 1150–1155

    Article  PubMed  CAS  Google Scholar 

  • Prelli F, Castaño E, Glenner GG, Frangione B (1988b). Differences between vascular and plaque core amyloid in Alzheimer’s disease. J Neurochem 51: 648–651

    Article  PubMed  CAS  Google Scholar 

  • Puchtler H, Sweat F, Levine M (1962) On the binding of Congo red by amyloid. J Histochem Cytochem 10: 355–364

    Article  CAS  Google Scholar 

  • Reisberg B (ed) (1983) Alzheimer’s disease, The Free Press, New York

    Google Scholar 

  • Roher AE, Lowenson JD, Clarke S, Wolkow C, Wang R, Cotter RJ, Reardon IM, Zürcher-Neely HA, Heinrikson RL, Ball MJ, Greenberg BD (1993) Structural alterations in the peptide backbone of ²-amyloid core protein may account for its deposition and stability in Alzheimer’s disease. J Biol Chem 268: 3072–3083

    PubMed  CAS  Google Scholar 

  • Schlote W (1965) Die Amyloidnatur der kongophilen, drusigen Entartung der Hirnarterien (Scholz) im Senium. Act Neuropathol 4: 449–468

    Article  Google Scholar 

  • Selkoe DJ (1989) Biochemistry of altered brain proteins in Alzheimer’s disease. Ann Rev Neurosci 12: 463–490

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (1991) The molecular pathology of Alzheimer’s disease. Neuron 6: 487–498

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher MG, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe D, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359: 325–327

    Article  PubMed  CAS  Google Scholar 

  • Seubert P, Oltersdorf T, Lee MG, Barbour R, Blomquist C, Davis DL, Bryant K, Fritz LC, Galasko D, Thal LJ, Lieberburg I, Schenk DB (1993) Secretion of ²-amyloid precursor protein cleaved at the amino terminus of the ²-amyloid peptide. Nature 361: 260–263

    Article  PubMed  CAS  Google Scholar 

  • Sisodia S, Koo EH, Beyreuther K, Unterbeck A, Price DL (1990) Evidence that ²-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 248: 492–495

    Article  PubMed  CAS  Google Scholar 

  • Spencer RGS, Halverson KJ, Auger M, McDermott AE, Griffin RG, Lansbury PT (1991) An unusual peptide conformation may precipitate amyloid formation in Alzheimer’s disease: application of solid-state NMR to the determination of protein secondary structure. Biochemistry 30:10382–10387

    Article  PubMed  CAS  Google Scholar 

  • Terry RD, Gonatas NK, Weiss M (1964) Ultrastructural studies in Alzheimer’ presenile dementia. Am J Pathol 44: 269–297

    PubMed  CAS  Google Scholar 

  • Weidemann A, König G, Bunke D, Fischer P, Salbaum JM, Masters CL, Beyreuther K (1989) Identification, biogenesis, and localization of precursors of Alzheimer’s disease A4 amyloid protein. Cell 57: 115–126

    Article  PubMed  CAS  Google Scholar 

  • Wong CW, Quaranta V, Glenner GG (1985) Neuritic plaques and cerebrovascular amyloid in Alzheimer’s disease are antigenically related. Proc Natl Acad Sci USA 82: 8729–8732

    Article  PubMed  CAS  Google Scholar 

  • Yankner B, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250: 279–282

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hilbich, C., Kisters-Woike, B., Masters, C.L., Beyreuther, K. (1994). Amyloid βA4 of Alzheimer’s Disease: Structural Requirements for Folding and Aggregation. In: Masters, C.L., Beyreuther, K., Trillet, M., Christen, Y. (eds) Amyloid Protein Precursor in Development, Aging and Alzheimer’s Disease. Research and Perspectives in Alzheimer’s Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01135-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01135-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-01137-9

  • Online ISBN: 978-3-662-01135-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics