Physical Background

  • Adrian E. Scheidegger

Abstract

The materials that are of importance in causing exogenetic geodynamic effects are water, air and ice. Of these materials, water and air can be treated as viscous fluids to a high degree of approximation; ice, on the other hand, is a “solid” which must be treated by the general methods of rheology.

Keywords

Dioxide Argon Hexagonal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. 1.
    Lamb, H.: Hydrodynamics. 6th ed. London: Cambridge Univ. Press 1932.Google Scholar
  2. 2.
    Pai, S. I.: Viscous Flow Theory ( 2 Vols.) New York: D. Van Nostrand 1957.Google Scholar
  3. 3.
    Goldstein, J.: Modern Developments in Fluid Dynamics ( 2 Vols.) Oxford: Oxford Univ. Press 1938.Google Scholar
  4. 1.
    Reiner, M.: Twelve Lectures on Theoretical Rheology. Amsterdam: North Holland Pub. Co. 1949.Google Scholar
  5. 2.
    Scheidegger, A. E.: Principles of Geodynamics. 2nd ed. Berlin-Göttingen-Heidelberg: Springer 1963. See p. 132 ff. therein.Google Scholar
  6. 1.
    See e.g. Batchelor, G. K.: The Theory of Homogeneous Turbulence. Cambridge: University Press 1953.Google Scholar
  7. 1.
    Prandtl, L.: Über die ausgebildete Turbulenz. Trans. 2nd Int. Congr. Appl. Mech., Zürich, p. 62 (1926).Google Scholar
  8. 2.
    see also Dryden, H. L., F. D. Murnaghan, and H. Bateman: Hydrodynamics. New York: Dover Publ. 1956; particularly, p. 396ff.Google Scholar
  9. 1.
    Batchelor, G. K.: The theory of homogeneous turbulence. London: Cambridge University Press 1953.Google Scholar
  10. 2.
    Bass, J.: C. R. Acad. Sci. Paris 228, 228 (1949).Google Scholar
  11. 3.
    Hinze, J. O.: Turbulence. New York: McGraw-Hill Book Co. 1959. See p. 164 therein.Google Scholar
  12. 1.
    Hinze, J. O.: Turbulence. New York: McGraw-Hill Book Co. 1959. See pp. 216 — 217 therein.Google Scholar
  13. 1.
    Lamb, H.: Hydrodynamics. New York: Dover Publications 1945. See p. 373ff. therein.Google Scholar
  14. 2.
    Taylor, G. I.: Proc. Roy. Soc. A 132, 499 (1931).CrossRefGoogle Scholar
  15. 3.
    Goldstein, S.: Proc. Roy. Soc. A 132, 524 (1931).CrossRefGoogle Scholar
  16. 1.
    Keulegan, G. H.: J. Res. U.S. Nat. Bur. Stand. 32, 303 (1944).Google Scholar
  17. 2.
    Keulegan, G. H.: J. Res. U.S. Nat. Bur. Stand. 43, 487 (1949).Google Scholar
  18. 1.
    Bernal, J. D.: Nature (Lond.) 181, 380 (1958).CrossRefGoogle Scholar
  19. 2.
    Butkovich, T. R.: Quart. Colo. School Mines 54, No. 3, 349 (1959).Google Scholar
  20. 3.
    Jellinek, H. H. G., and R. Brill: J. Appl. Physics. 27, 1198 (1956).CrossRefGoogle Scholar
  21. 1.
    Gold, L. W.: Canad. J. Phys. 38, 1137 (1960).CrossRefGoogle Scholar
  22. 2.
    Jellinek, H. H. G., and R. Brill: J. Appl. Physics. 27, 1198 (1956).CrossRefGoogle Scholar
  23. 3.
    Finsterwalder, R.: Publ. Assoc. Int. Hydrol. Scient. 47, 5 (1958).Google Scholar
  24. 4.
    Glen, J. W.: Phil. Mag. Suppl. 7, 254 (1958).Google Scholar
  25. 5.
    Somigliana, C.: Atti Acad. Nat. Lincei, Rend. Cl. Sci. fis., mat. e nat. 30, (5) 291, 323, 360 (1921).Google Scholar
  26. 6.
    Hill, R.: The Mathematical Theory of Plasticity. Oxford: Clarendon Press 1950.Google Scholar
  27. 1.
    Glen, J. W.: J. Glaciol. 2, 111 (1952).Google Scholar
  28. 2.
    Perutz, M. F.: Observatory 70, 64 (1950).Google Scholar
  29. 3.
    Glenn, J. W., and S. J. Jones: Proc. Internat. Conf. Low Temp. Sci., Sapporo, Japan 1, Pt. 1, 267 (1966).Google Scholar
  30. 4.
    Butkovich, T. R., and J. K. Landauer: The Flow Law for Ice. Sipre report DA Proj. 8-66-02-400. Wilmette, Illinois 1959.Google Scholar
  31. 5.
    Meier, M. F.: U.S. Geolog. Surv. Prof. Pap. 351 (1960).Google Scholar
  32. 6.
    Brunt, D.: Physical and Dynamical Meteorology. London: Cambridge Univ. Press 1939.Google Scholar
  33. 7.
    Haurwitz, B.: Dynamic Meteorology, New York: McGraw-Hill Book Co. 1941.Google Scholar
  34. 8.
    Eliassen, A., and E. Kleinschmidt: Encycl. Phys. 48, 1 (1957).Google Scholar
  35. 9.
    Berry, T. A., E. Bollay and N. R. Beers: Handbook of Meteorology, New York: McGraw-Hill Book Co. 1945.Google Scholar
  36. 10.
    Ertel, H.: Methoden und Probleme der dynamischen Meteorologie. Berlin: Springer 1938.Google Scholar
  37. 11.
    Exner, F. M.: Dynamische Meteorologie. Vienna: Springer 1923.Google Scholar
  38. 12.
    Holmboe, J., G. E. Forsythe, and W. Gustin: Dynamic Meteorology. New York: J. Wiley & Sons 1945.Google Scholar
  39. 13.
    Koschmieder, H.: Physik der Atmosphäre, Vol. 2. Leipzig: Akademische Verlagsges. 1951.Google Scholar
  40. 1.
    Sutton, 0. G.: Micrometeorology, New York: McGraw Hill Book Co. 1953.Google Scholar
  41. 2.
    Geiger, R.: Das Klima der bodennahen Luftschicht, 3d. ed. Braunschweig 1950.Google Scholar
  42. 3.
    Paneth, F. A.: Sci. J. Roy. Coll. Sci. 6, 120 (1933).Google Scholar
  43. 1.
    See e.g. Planck, M.: Treatise on Thermodynamics. 3d. ed., p. 63. New York: Dover Pub.-Co. 1945.Google Scholar
  44. 1.
    Pockels, F. C.: Ann. Physik (4), 4, 459 (1901).CrossRefGoogle Scholar
  45. 2.
    Lord Rayleigh: Sci. Papers 2, 258 (1883).Google Scholar
  46. 3.
    Lyra, G.: Z. angew. Math. Mech. 23, 1 (1943).CrossRefGoogle Scholar
  47. 4.
    Soxxov, T. Z., and L. N. Gutman: Izv. Akad. Nauk Sssr, Atm. Ocean. Phys. 4, 23 (1968).Google Scholar
  48. 1.
    Lyra, G.: Z. angew. Math. Mech. 23, 1 (1943).CrossRefGoogle Scholar
  49. 1.
    Blasius, H.: Z. Math. Physik 56, 4 (1908).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1970

Authors and Affiliations

  • Adrian E. Scheidegger
    • 1
  1. 1.Dept. of Mining, Metallurgy, and Petroleum EngineeringUniversity of IllinoisUrbanaUSA

Personalised recommendations