Aporphine and Morphinan Alkaloids

  • Trevor Robinson
Part of the Molecular Biology Biochemistry and Biophysics / Molekularbiologie Biochemie und Biophysik book series (MOLECULAR, volume 3)

Abstract

The aporphine and morphinan alkaloids can be conveniently considered together because they often occur together in the same plant and also because in terms of structure they can both be derived from a benzylisoquinoline skeleton by additional ring closures:

Keywords

Dopamine Morphine Alkaloid Tritium Quinoline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Batrersby, A. R., and B. J. T. Harper: Chem. Ind. ( London ) 1958, 364Google Scholar
  2. 2.
    Leete, E.: Chem. Ind. ( London ) 1958, 977 - 978.Google Scholar
  3. 3.
    Gross, S., and R. F. Dawson: Biochemistry 2, 186 - 188 (1963).PubMedCrossRefGoogle Scholar
  4. 4.
    Neubauer, D.: Arch. Pharm. 298, 737 - 741 (1965).CrossRefGoogle Scholar
  5. 5.
    Raporort, H., F. R. Stermitz, and D. R. Baker: J. Am. Chem. Soc. 82, 2765 - 2772 (1960).CrossRefGoogle Scholar
  6. 6.
    Battersby, A. R., and R. J. Francis: J. Chem. Soc. 1964, 4078 - 4080.Google Scholar
  7. 7.
    Battersby, R. Binks, and B. J. T. Harper: J. Chem. Soc. 1962, 3534 - 3544.Google Scholar
  8. 8.
    Jindra, A., Z. Sipal und V. Hudecova: Experientia 20, 371 - 372 (1964).PubMedCrossRefGoogle Scholar
  9. 9.
    Barton, D. H. R., D. S. Bhakuni, G. M. Chapman, and G. W. Kirby: Chem. Communs. 1966, 259 - 260.Google Scholar
  10. 10.
    Battersby, A. R., R. T. Brown, J. H. Clements, and G. G. Iverach: Chem. Communs. 1965, 230 - 232.Google Scholar
  11. 11.
    Battersby, R. Binks, R. J. Francis, D. J. Mccaldin, and H. Ramuz: J. Chem. Soc. 1964, 3600 - 3610.Google Scholar
  12. 12.
    Battersby, D. M. Foulkes, and R. Binks: J. Chem. Soc. 1965, 3323 - 3332.Google Scholar
  13. 13.
    Barton, D. H. R., G. W. Kirby, W. Steglich, G. M. Thomas, A. R. Battersby,T. A. Dobson, and H. Ramuz: J. Chem. Soc. 1965, 2423 - 2438.Google Scholar
  14. 14.
    Martin, R. O., M. E. Warren, and H. Raporort: Biochemistry 6, 2355 to 2362 (1967).Google Scholar
  15. 15.
    Barton, D. H. R.: Proc. Chem. Soc. 1963, 293 - 298.Google Scholar
  16. 16.
    Barton Pure Appl. Chem. 9, 35 - 47 (1964).Google Scholar
  17. 17.
    Barton, D. S. Bhakuni, G. M. Chapman, G. W. Kirby, L. J. Haynes, and K. L. Stuart: J. Chem. Soc. (c) 1967, 1295 - 1298.Google Scholar
  18. 18.
    Franck, B., G. Blaschke und G. Schlingloff: Angew. Chem. 75, 957 - 965 (1963).CrossRefGoogle Scholar
  19. 19.
    Albonico, S. M., A. M. Kuck und V. Deulofeu: Ann. Chem., Liebigs 685, 200 - 206 (1965).CrossRefGoogle Scholar
  20. 20.
    Franck, B., u. G. Blaschke: Ann. Chem., Liebigs 695, 144 - 157 (1966).CrossRefGoogle Scholar
  21. 21.
    Barton, D. H. R., A. J. Kirby, and G. W. Kirby: Chem. Communs. 1965, 52.Google Scholar
  22. 21a.
    Barton,D. S.Bhakuni,R.James,and G. W.Kirby: J. Chem. Soc. (c)1967,128 - 132.Google Scholar
  23. 22.
    Rapoport, H., F. R. Stermitz, and D. R. Baker: J. Am. Chem. Soc. 82, 2765 - 2772 (1960).CrossRefGoogle Scholar
  24. 23.
    Stermitz, F. R., and H. Raporort: Nature 189, 310 - 311 (1961).CrossRefGoogle Scholar
  25. 23a.
    Blaschke, G., H.I.Parker, and H. Rapoport: J. Am. Chem. Soc. 89, 1540-1541 (1967).Google Scholar
  26. 23b.
    Mothes, K.: Naturwissenschaften 53, 317 - 323 (1966).PubMedCrossRefGoogle Scholar
  27. 24.
    Schenck, G., K.-H. Frömming und H.-G. Schneller: Arch. Pharm. 298, 855-860 (1965).Google Scholar
  28. 24a.
    Jindra, A., P. Kovacs, Z. Pittnerova, and M. Psenak: Phytochem. 5, 1303 - 1315 (1966).CrossRefGoogle Scholar
  29. 25.
    Fairbairn, J. W., A. Paterson, and G. Wassel: Phytochem. 3, 577 - 582 (1964).CrossRefGoogle Scholar
  30. 26.
    Fairbairn, and G. Wassel: Phytochem. 4, 583 - 585 (1965).Google Scholar
  31. 27.
    Fairbairn, and A. Paterson: Nature 210, 1163 - 1164 (1966).CrossRefGoogle Scholar
  32. 27a.
    Fairbairn, and S. El-Masry: Phytochem. 6, 499 - 504 (1967).CrossRefGoogle Scholar
  33. 28.
    Barton, D. H. R., R. James, G. W. Kirby, G. W. Turner, and D. A. Widdowson: Chem. Communs. 1966, 294 - 295.Google Scholar
  34. 28a.
    Mondon, A., and M. Ehrhardt: Tetrahedron Letters 1966, 2557 - 2565.Google Scholar
  35. 29.
    Leete, E., and A. Ahmad: J. Am. Chem. Soc. 88, 4722 - 4725 (1966).PubMedCrossRefGoogle Scholar
  36. 29a.
    Barton, D. H. R., R. James, G. W. Kirby, and D. A. Widdowson: Chem. Communs. 1967, 266 - 268.Google Scholar
  37. 30.
    Stermitz, F. R., and J. N. Seiber: J. Org. Chem. 31, 2925 - 2933 (1966).PubMedCrossRefGoogle Scholar
  38. 31.
    Hegnauer, R.: Pharmazie 15, 634 - 642 (1960).PubMedGoogle Scholar
  39. 32.
    Spenser, I. D., and H. P. Tiwari: Chem. Communs. 1966, 55 - 56.Google Scholar
  40. 33.
    Schürre, H. R., U. Orban, and K. Mothes: Europ. J. Biochem. 1, 70 - 72 (1967).CrossRefGoogle Scholar
  41. Fairbairn, J. W., and S. El-Masry: Phytochem. 7, 181–187 (1968). Poppy seeds were found to contain bound forms of several alkaloids including codeine. Free alkaloids were released during germination or by pepsin digestion. An enzyme system was found to incorporate morphine into these bound forms.Google Scholar
  42. Barton, D. H. R., D. S. Bhakuni, G. M. Chapman, and G. W. Kirby: J. Chem. Soc. (C) 1967, 2134–2140. N-methylcoclaurine was better than coclaurine as a precursor of roemerine in Papaver dubium; N-methylnorcoclaurine was not as good. 0-methyl carbon was not retained in methylene dioxy group.Google Scholar
  43. Battersby, A. R., D. M. Foulkes, M. Hirst, G.V. Parry, and J. Staunton: J. Chem. Soc. (C) 1968, 210–216. Since norlaudanosoline was incorporated into both morphine and papaverine, the two 0-methylation steps must occur after isoquinoline formation. Laudanosoline is probable intermediate between norlaudanosoline and reticuline.CrossRefGoogle Scholar
  44. Franck, B., u. L.-F. Tietze: Angew. Chem., Intern. Ed. 6, 799–800 (1967). Chemical oxidation of laudanosolines to aporphines could be performed without quaternization if o-quinone formation was inhibited by complexing o-diphenolic groups.CrossRefGoogle Scholar
  45. Frömming, K.-H.: Arch. Pharm. 300, 977–981 (1967). Tyrosinase, lactase, or peroxidase used to catalyze oxidative coupling of laudanosoline methiodide to aporphine derivative.CrossRefGoogle Scholar
  46. Barton, D. H. R., A. J. Kirby, and G. W. Kirby: J. Chem. Soc. (C) 1968, 929–-936. Full report of work cited in ref. 21.Google Scholar
  47. Haynes, L. J., G. E. M. Husbands, and K. L. Stuart: J. Chem. Soc. (C) 1968, 951–957. Tracer experiments showed conversion of coclaurine, norcoclaurine, or isococlaurine to 8,14-dihydronorsalutaridine in Croton linearis.Google Scholar
  48. Battersby, A. R., J. A. Martin, and E. Brochmann-Hanssen: J. Chem. Soc. (C) 1967, 1785–1788. Double labelling experiments established that conversion of codeinone to codeine is not reversible.Google Scholar
  49. Barton, D. H. R., R. James, G. W. Kirby, D. W. Turner, and D. A. Widdowson: J. Chem. Soc. (c) 1968, 1529–1536. Structure and biosynthesis of Erythrina alkaloids.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Trevor Robinson
    • 1
  1. 1.Department of BiochemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations