Advertisement

Abstract

The tropane alkaloids are divided into two major groups, those found in certain genera of the Solanaceae and those found in Erythroxylon spp. The solanaceous group includes species of Atropa (esp. A. belladonna), Datura, Duboisia, Hyoscyamus, Mandragora, and Scopolia. The best-known alkaloids of this group are (—)-hyoscyamine (1) and (—)-scopolamine (2) (hyoscine). (—)-Hyoscyamine and (—)-scopolamine are esters of tropic acid with the bases tropine and scopoline respectively. Optical activity is contributed solely by the tropic acid residue since the bases have a plane of symmetry passing through C-3, the nitrogen atom, and the methyl group. In the accompanying conformational structures the C-3 ester group is shown as trans to the nitrogen atom, since it has this configuration in the best-known solanaceous tropane alkaloids. However, compounds with the opposite configuration are known both as synthetic derivatives and as naturally occurring alkaloids. They are designated by the prefix pseudo-. During pharmaceutical preparation of the esters of tropic acid racemization readily occurs since the asymmetric carbon atom is adjacent to a carbonyl group and can enolize. DL-hyoscyamine resulting from this racemization is known as atropine.

Keywords

Root Culture Arginase Activity Tropane Alkaloid Pyrrolidine Ring Tetrahedron Letter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Romeike, A.: Pharmazie 15, 655–658 (1960).PubMedGoogle Scholar
  2. 2.
    Romeike, A.: Pharmazie 20, 738–739 (1965).PubMedGoogle Scholar
  3. 3.
    Romeike, A.: Naturwissenschaften 53, 82 (1966).PubMedCrossRefGoogle Scholar
  4. 4.
    Leete, E.: J. Am. Chem. Soc. 84, 55–57 (1962).CrossRefGoogle Scholar
  5. 5.
    Leete, E.: Tetrahedron Letters 1964 1619–1622.Google Scholar
  6. 6.
    Leete, E., and M. C. L. Louden: Chem. amp; Ind. ( London ) 1963, 1725–1726.Google Scholar
  7. 7.
    Liebisch, H. W., H. R. Schütte und K. Mothes: Ann. Chem., Liebigs 668, 139–144 (1963).CrossRefGoogle Scholar
  8. 8.
    Liebisch, H. W., H. Ramin, I. Schöffinius und H. R. Schütte: Z. Naturforsch. 20b, 1183–1185 (1965).Google Scholar
  9. 9.
    Liebisch, H. W., W. Maier, and H. R. Schütte: Tetrahedron Letters 1966, 4079–4082.Google Scholar
  10. 10.
    Kączkowski, J., H. R. Schütte und K. Mothes: Naturwissenschaften 47, 304–305 (1960).CrossRefGoogle Scholar
  11. 11.
    Kączkowski, J., H. R. Schütte und K. Mothes: Biochim. et Biophys. Acta 46, 588–594 (1961).CrossRefGoogle Scholar
  12. 12.
    Robertson, A. V., and L. Marion: Can. J. Chem. 38, 294–297 (1960).CrossRefGoogle Scholar
  13. 13.
    Gibson, M. R., and E. R. Abbot: Lloydia 26, 125–132 (1963).Google Scholar
  14. 14.
    Gibson, M. R., and G. A. Danquist: J. Pharm. Sci. 54, 1526–1528 (1965).PubMedCrossRefGoogle Scholar
  15. 15.
    Evans, W. C., and W. W. Partridge: J. Pharm. Pharmacol. 6, 702–706 (1954).PubMedCrossRefGoogle Scholar
  16. 16.
    Jindra, A., S. Zadrazil, and S. Černa: Collection Czechoslov. Chem. Commun. 24, 2761–2767 (1959).Google Scholar
  17. 17.
    Peacock, S. M., Jr., D. B. Leyerle, and R. F. Dawson: Am. J. Botany 31, 463–466 (1944).CrossRefGoogle Scholar
  18. 18.
    Romeike, A.: Naturwissenschaften 46, 492–493 (1959).CrossRefGoogle Scholar
  19. 19.
    Mothes, K., u. A. Romeike: Naturwissenschaften 42, 631–632 (1955).CrossRefGoogle Scholar
  20. 20.
    van Hala, P. R.: Biochim. et Biophys. Acta 19, 562 (1956).CrossRefGoogle Scholar
  21. 21.
    Leete, E., L. Marion, and I. D. Spenser: Can. J. Chem. 32, 1116–1123 (1954).CrossRefGoogle Scholar
  22. 22.
    Evans, W. C., and W. J. Griffin: J. Pharm. Pharmacol. 16, 337–341 (1964).PubMedCrossRefGoogle Scholar
  23. 23.
    Romeike, A.: Naturwissenschaften 47, 64–65 (1960).CrossRefGoogle Scholar
  24. 24.
    Jindra, A., S. Léblová, Z. Šípal und A. Čihák: Planta Med. 8, 44–48 (1960).CrossRefGoogle Scholar
  25. 25.
    Paris, R., et L. Cosson: Compt. rend. 260, 3148–3151 (1965).Google Scholar
  26. 26.
    Cosson, L., P. Chouard, and R. Paris: Lloydia 29, 19–25 (1966).Google Scholar
  27. 27.
    Madan, C. L., U. S. Gupta, and R. K. Khanna: Current Sci. (India) 35, 311–312 (1966).Google Scholar
  28. 27a.
    Paris, R., et A. Saint-Firmin: Compt. rend. 264 D, 825–827 (1967).Google Scholar
  29. 28.
    Leete, E., and J. B. Murrill: Tetrahedron Letters 1967, 1727–1730.Google Scholar
  30. 28a.
    Leete, E., and M. L. Louden: Chem. amp; Ind. ( London ) 1961, 1405–1406.Google Scholar
  31. 29.
    Goodeve, A. M., u. E. Ramstad: Experientia 17, 124–125 (1961).PubMedCrossRefGoogle Scholar
  32. 30.
    Jindra, A., D. Sofrová, and S. Léblová: Collection Czechoslov. Chem. Commun. 27, 2467–2470 (1962).Google Scholar
  33. 31.
    Jindra, A., A. Čihák, and P. Kovács: Collection Czechoslov. Chem. Commun. 29, 1059–1064 (1964).Google Scholar
  34. 32.
    Kączxowski, J.: Bull. acad. polon. sci. 12, 375–378 (1964).Google Scholar
  35. 33.
    Scher, W. I., and H. J. Vogel: Proc. Nat. Acad. Sci. US 43, 796–803 (1957).CrossRefGoogle Scholar
  36. Schii TE, H. R., u. G. Seelig: Ann. Chem., Liebigs 711, 221–226 (1968). Tracer feeding experiments indicated origin of multiflorine in Lupines digitatus by pathway: lysine→cadaverine→sparteine multiflorine. ε-15N of lysine was incorporated as a unit with 14C-2.CrossRefGoogle Scholar
  37. Ferris, J. P., C. B. Boyce, and R. C. Briner: Tetrahedron Letters 1966, 5129–5131. The quinolizidine alkaloids of Lythraceae are postulated to be derived from units related to isopelletierine, benzaldehyde, and cinnamic acid.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Trevor Robinson
    • 1
  1. 1.Department of BiochemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations