Quinolines and Other Alkaloids Related to Anthranilic Acid

  • Trevor Robinson
Part of the Molecular Biology Biochemistry and Biophysics / Molekularbiologie Biochemie und Biophysik book series (MOLECULAR, volume 3)


Several alkaloids are postulated to be derived from anthranilic acid. These include some rather simple substituted anthranilic acids, quinolines, and some with condensed ring systems of various types. Some of the parent nuclei of these alkaloids are as follows:


Acid Quinoline Shikimic Acid Anthranilic Acid Unripe Fruit Parent Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Leete, E., L. Marion, and I. D. Spenser: Can. J. Chem. 33, 405–410 (1955).CrossRefGoogle Scholar
  2. 2.
    Leete, E., L. Marion, and I. D. Spenser: Chem. Ind. (London) 1957, 1270.Google Scholar
  3. 3.
    Munsche, D., and K. Mothes: Phytochem. 4, 705–712 (1965).CrossRefGoogle Scholar
  4. 4.
    Nair, P. M., and C. S. Vaidyanathan: Phytochem. 3, 513–523 (1964).CrossRefGoogle Scholar
  5. 5.
    Vishin, M. L., D. Munsche und H.-B. Schröter: Flora (Jena) 154, 299–316 (1964).Google Scholar
  6. 5a.
    Boit, H.-G.: Ergebnisse der Alkaloid-Chemie bis 1960. Berlin: Akademie Verlag 1961.Google Scholar
  7. 6.
    Monkovie, I., I. D. Spenser, and A. O. Plunkett: Can. J. Chem. 45, 1935–1948 (1967).CrossRefGoogle Scholar
  8. 7.
    Matsuo, M., M. Yamazaki, and Y. Kasida: Biochem. Biophys. Res. Communs. 23, 679–682 (1966).CrossRefGoogle Scholar
  9. 8.
    Aneja, R., S. K. Mukerjee, and T. R. Seshadri: Tetrahedron 4, 256–270 (1958).CrossRefGoogle Scholar
  10. 9.
    Luckner, M.: Europ. J. Biochem. 2, 74–78 (1967).PubMedCrossRefGoogle Scholar
  11. 1O.
    Baldwin, M. E., I. R. Bilk, A. A. Komzak, and J. R. Price: Tetrahedron 16, 206–211 (1961).CrossRefGoogle Scholar
  12. 11.
    Eliasberg, J., P. Friedländer: Ber. deut. chem. Ges. 25, 1752–1760 (1892).CrossRefGoogle Scholar
  13. 12.
    Fitzgerald, J. S., S. R. Johns, J. A. Lamberton, and A. H. Redcliffe. Australian J. Chem. 19, 151–159 (1966).Google Scholar
  14. 13.
    Gröger, D., S. Johne und K. Monhes: Experientia 21, 13–14 (1965).CrossRefGoogle Scholar
  15. 14.
    Skursky, L.: Collection Czechoslov. Chem. Communs. 30, 2080–2083 (1965).Google Scholar
  16. 15.
    Robinson, T.: Phytochem. 4, 67–74 (1965).CrossRefGoogle Scholar
  17. 16.
    Yamazaki, M., A. Ikuta, T. Mori, and T. Kawana: Tetrahedron Letters 1967, 3317–3320.Google Scholar
  18. Prager, R. H., and G. R. Skurray: Australian J. Chem. 21, 1037–1042 (1968). Anthranilic acid-3,5-3H and mevalonic acid-2-14C fed to Acronychia baueri gave rise to labelled acronidine.CrossRefGoogle Scholar
  19. Cobet, M., and M. Luckner: Europ. J. Biochem. 4, 76–78 (1968). 2,4-dihydroxyquinoline-3-14C fed to Ruta graveolens gave rise to labelled kokusaginine. The precursor exists in pH-dependent equilibrium with 2-aminobenzoyl acetic acidCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1968

Authors and Affiliations

  • Trevor Robinson
    • 1
  1. 1.Department of BiochemistryUniversity of MassachusettsAmherstUSA

Personalised recommendations