Skip to main content

Abstract

The alkaloids containing an indole (or reduced indole) nucleus: make up an extensive and complex group. A rough estimate is that more than one quarter of all known alkaloids are indoles. However, other aspects of their structure are so diverse that superficially there appears to be little unity in the group. As knowledge of biosynthetic pathways has developed, though, a few generalities have been noted which make it possible to arrive at many of the natural structures by starting with only a few simple precursors and proposing some generalized types of reactions. Knowledge of biosynthetic pathways has also resulted in the grouping of certain alkaloids that do not have an indole nucleus with the indole alkaloids because of similarities in precursors and biosynthetic pathways (e.g., quinine, discussed below).

Q for Quinine which children take

With Jam and little bits of cake

Moral

How idiotic! Can Quinine

Replace Cold Baths and Sound Hygiene ?

A Moral Alphabet, Hilaire Belloc

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Raffauf, R. F., and M. B. Flagler: Econ. Botany 14, 37–55 (1960).

    Article  CAS  Google Scholar 

  2. Pictet, A.: Arch. Pharm. 244, 389–396 (1906).

    Article  CAS  Google Scholar 

  3. Schütte, H. R., u. B. Maier: Arch. Pharm. 298, 459–465 (1965).

    Article  Google Scholar 

  4. O’donovan, D. G., and M. F. Keogh: J. Chem. Soc. (c) 1966, 1570–1572.

    Google Scholar 

  5. Leete, E.: Tetrahedron Letters 14, 35–41 (1961).

    CAS  Google Scholar 

  6. Yamazaki, M., and A. Ikuta: Tetrahedron Letters 1966, 3221–3224.

    Google Scholar 

  7. Leete, E., A. Ahmad, and I. Komrls: J. Am. Chem. Soc. 87, 4168–4174 (1965).

    Article  PubMed  CAS  Google Scholar 

  8. Mothes, K., F. Weygand, D. Gröger und H. Grisebach: Z. Naturforsch. 14b, 41–44 (1958).

    Google Scholar 

  9. Leete, E., and M. Yamazaki: Tetrahedron Letters 1964, 1499–1501.

    Google Scholar 

  10. Leete, E., and M. Yamazaki: J. Am. Chem. Soc. 82, 6338–6342 (1960).

    Article  Google Scholar 

  11. Teuscher, E., u. D. Gröger: Arch. Pharm. 298, 695–699 (1965).

    Article  CAS  Google Scholar 

  12. Hendrickson, J. B., and R. A. Silva: J. Am. Chem. Soc. 84, 643–650 (1962).

    Article  CAS  Google Scholar 

  13. Tschesche, R., H. Jenssen und R. Narasimhachari: Chem. Ber. 91, 1732–1744 (1958).

    Article  CAS  Google Scholar 

  14. Woodward, R. B., N. C. Yang, T. J. Katz, V. M. Clark, J. Harley-Mason, R. F. J. Ingleby, and N. Sheppard: Proc. Chem. Soc. 1960, 76–78.

    Google Scholar 

  15. Woodward, R. B.: Angew. Chem. 68, 13–20 (1956).

    Article  CAS  Google Scholar 

  16. Wenkert, E.: Experientia 15, 165–173 (1959).

    Article  CAS  Google Scholar 

  17. Wenkert, E.: J. Am. Chem. Soc. 84, 98–102 (1962).

    Article  CAS  Google Scholar 

  18. Charrerjee, A., and S. Ghosal: J. Indian Chem. Soc. 42, 123–126 (1965).

    Google Scholar 

  19. Thomas, R.: Tetrahedron Letters 1961, 544–553.

    Google Scholar 

  20. Goeggel, H., and D. Arigoni: Chem. Communs. 1965, 538–539.

    Google Scholar 

  21. Leete, E., and S. Ueda: Tetrahedron Letters 1966, 4915–4918.

    Google Scholar 

  22. Battersby, A. R., R. T. Brown, J. A. Knight, J. A. Martin, and A. O. Plunkett: Chem. Communs. 1966, 346–347.

    Google Scholar 

  23. Loew, P., H. Goeggel, and D. Arigoni: Chem. Communs. 1966, 347–348.

    Google Scholar 

  24. Battersby, A. R., R. T. Brown, R. S. Kapil, J. A. Knight, J. A. Martin, and A. O. Plunkett: Chem. Communs. 1966, 890–891.

    Google Scholar 

  25. Money, T., I. G. Wright, F. Mccapra, and A. I. Scorn: Proc. Nat. Acad. Sci. U.S. 53, 901–903 (1965).

    Article  CAS  Google Scholar 

  26. Battersby, A. R., R. T. Brown, R. S. Kapil, J. A. Martin, and A. O. Plunkett: Chem. Communs. 1966, 888–890.

    Google Scholar 

  27. Taylor, W. I.: Science 153, 954–956 (1966).

    Article  PubMed  CAS  Google Scholar 

  28. Trojanek, J., and K. Blaha: Lloydia 29, 149–155 (1966).

    CAS  Google Scholar 

  29. Barton, D. H. R., G. W. Kirby, R. H. Prager, and E. M. Wilson: J. Chem. Soc. 1965, 3990–3994.

    Google Scholar 

  30. Kowanko, N., and E. Leste: J. Am. Chem. Soc. 84, 4919–4921 (1962).

    Article  CAS  Google Scholar 

  31. Leete, E., and J. N. Wemple: J. Am. Chem. Soc. 88, 4743–4744 (1966).

    Article  CAS  Google Scholar 

  32. Teuber, H. J., u. H. Pfaff: Naturwissenschaften 45, 313–314 (1958).

    Article  CAS  Google Scholar 

  33. Casinovi, C. G., G. B. Marini-Bettolo, and N. G. Bisset: Nature 193, 1178 (1962).

    Article  PubMed  CAS  Google Scholar 

  34. Kutney, J. P., R. T. Brown, and E. Piers: Lloydia 27, 447–455 (1965).

    Google Scholar 

  35. Gröger, D., K. Stolle und K. Mothes: Z. Naturforsch. 21b, 206–208 (1966).

    Google Scholar 

  36. Tyler, V. E., Jr.: J. Pharm. Sci. 50, 629–640 (1961).

    Article  PubMed  CAS  Google Scholar 

  37. Plieninger, H., H. Immel und A. Völkl: Ann. Chem., Liebigs 706, 223–229 (1967).

    Article  CAS  Google Scholar 

  38. Taber, W. A., L. C. Vining, and R. A. Heacock: Phytochem. 2, 65–70 (1963).

    Article  CAS  Google Scholar 

  39. Staba, E. J., and P. Laursen: J. Pharm. Sci. 55, 1099–1101 (1966).

    Article  CAS  Google Scholar 

  40. Agurell, S., and E. Ramstad: Tetrahedron Letters 1961, 501–505.

    Google Scholar 

  41. Agurell, S., and M. Johansson: Acta Chem. Scand. 18, 2285–2293 (1964).

    Article  CAS  Google Scholar 

  42. Floss, H.-G., H. Günther, D. Gröger und D. Erge: Z. Naturforsch. 21b, 128–131 (1966).

    CAS  Google Scholar 

  43. Vorgr, R., u. M. Bornschein: Pharmazie 21, 380 (1966).

    Google Scholar 

  44. Gröger, D., D. Erge und H.-G. Floss: Z. Naturforsch. 21b, 827–832 (1966).

    Google Scholar 

  45. Floss, H. G., U. Hornemann, N. Schilling, D. GRÖGER, and D. Erge: Chem. Communs. 1967, 105–106.

    Google Scholar 

  46. Agurell, S. L.: Biogenetic interrelationships of ergot alkaloids, Ph. D. thesis, Purdue University 1962.

    Google Scholar 

  47. Beliveau, J., and E. Ramstad: Lloydia 29, 234–238 (1966).

    CAS  Google Scholar 

  48. Taylor, E. H., K. J. Goldner, S. F. Pong, and H. R. Shough: Lloydia 29, 239–244 (1966).

    CAS  Google Scholar 

  49. Taylor, E. H., and H. R. Shough: Lloydia 30, 197–201 (1967).

    CAS  Google Scholar 

  50. Fehr, T., W. Acklin, and D. Arigoni: Chem. Communs. 1966, 801–802.

    Google Scholar 

  51. Voigt, R., u. M. Bornschein: Pharmazie 20, 521 (1965).

    PubMed  CAS  Google Scholar 

  52. Genest, K.: J. Pharm. Sci. 55, 1284–1288 (1966).

    Article  PubMed  CAS  Google Scholar 

  53. Taber, W. A.: Lloydia 30, 39–66 (1967).

    CAS  Google Scholar 

  54. Slaytor, M., and I. J. Mcfarlane: Phytochem. 7, 605–611 (1968). Tracer studies indicated that N-acetyltryptamine and harmalan are probable intermediates between tryptamine and harman in Passifiora edulis.

    Article  CAS  Google Scholar 

  55. Battersby, A. R., R. S. Kapil, and R. Southgate: Chem. Commun. 1968, 131–133. Absolute stereochemistry of loganin agrees with stereochemistry of most indole alkaloids apparently derived from it.

    Google Scholar 

  56. Battersby, A. R., R. S. Kapil, and R. Southgate, J. A. Martin, and L. Mo: Chem. Commun. 1968, 133–134. Labelled loganin fed to Vinca rosea or Rauwolfia serpentin gave rise to indole alkaloids all labelled at the expected position.

    Article  Google Scholar 

  57. Inouye, H., S. Ueda, and Y. Takeda: Tetrahedron Letters 1968, 3453–3458. Sweroside-10–14C fed to Vinca rosea gave labelled vindoline. Sweroside suggested as intermediate between loganin and corynantheine-type skeletons.

    Google Scholar 

  58. Voigt, R., M. Bornschein and G. Rabitzsch: Pharmazie 22, 326–329 (1967). Tritiated chanoclavine-I fed to unripe sclerotia of Claviceps purpurea was converted to agroclavine, elymoclavine, and peptide alkaloids.

    CAS  Google Scholar 

  59. Gröger, D., D. Erge and H. G. Floss: Z. Naturforsch. 23b, 177–180 (1968). Tracer feeding studies with Claviceps paspali showed conversion of alanine-2-14C or -15N to carbinolamide moiety of D-lysergic acid-a-hydroxyethylamide.

    Google Scholar 

  60. Voigt, R., u. S. Keipert: Pharmazie 22, 329–336 (1967). Studies on influence of culture conditions on growth and alkaloid production of Claviceps purpurea.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, T. (1968). Indole Alkaloids. In: The Biochemistry of Alkaloids. Molecular Biology Biochemistry and Biophysics / Molekularbiologie Biochemie und Biophysik, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-01015-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-01015-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-04275-4

  • Online ISBN: 978-3-662-01015-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics