Skip to main content

Regulation of the Na+/H+ Exchanger in Essential Hypertension: Functional and Genetic Abnormalities

  • Conference paper
Cellular Aspects of Hypertension

Abstract

Ten years ago, we initiated studies of the genetic variations of Na+ transport systems as an approach to the genetics of hypertension. One of these biochemical phenotypes, Na+/Li+ exchange (Na/Li EXC), is elevated in a sizable proportion of the essentially hypertensive population. Furthermore, the abnormalities observed have been shown by family studies to be largely genetically determined [1,2,3]. In pursuing the question of what significance these abnormalities might have in the pathophysiology of hypertension, we found that Na+/Li+ countertransport has many features in common with the Na+/H+ exchanges (Na/H EXC). The Na+ exchanges system is expressed not only in red blood cells (rbc), but in three target tissues of the hypertensive process: vascular smooth muscle (VSM) [4,5], kidney epithelial [6] and adrenal glomerulosa cells [7]. In these cells Na/H EXC regulates cell pH and volume, and it is modulated by vasocontrictor and growth factor agonist which mobilize Ca2+ [4,8,10].

Supported by grants from the National Institute of Health, NHLBI 35664 and by a specialized Center of Research Award in Hypertension (1P50HP-36568).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canessa M, Adragna N, Solomon HS, Connolly TM, Tosteson DC (1980) Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302: 772–776

    Article  PubMed  CAS  Google Scholar 

  2. Canessa M, Brugnara C, Escobales NE (1987) The Li-Na exchange and Na-K-Cl cotransport in essential hypertension. Hypertension 10: 4–10

    Google Scholar 

  3. Canessa M (1988) Genetic variants of Na transport systems in human red cells. In: Nagel R (ed) Genetically abnormal red cells Vol 2. CRC Press, Boca Raton. pp 131–148

    Google Scholar 

  4. Berk BC, Brock TA, Gimbrone MA, Alexander RW (1987) Early agonist-mediated ionic events in cultured vascular smooth muscle cells: calcium mobilization is associated with intracellular acidification. J Biol Chem 262: 5065–5072

    PubMed  CAS  Google Scholar 

  5. Vallega G, Canessa ML, Berk CB, Brock TA, Alexander RW (1988) Vascular smooth muscle Na+/H+ exchange kinetics and its activation by angiotensin II. Am J Physiol 254: C751–758

    PubMed  CAS  Google Scholar 

  6. Mahnesmith RL. Aronson PS (1985) The plasma membrane sodium/hydrogen exchange and its role in physiological and pathophysiological processes. Circ Res 56: 773–788

    Google Scholar 

  7. Conlin P, Vallega G, Canessa M, Williams RW (1990) Na+/H+ exchange in adrenal glomerulosa cells and its activation by angiotensin II. Endocrinology 127: 236–244

    Article  PubMed  CAS  Google Scholar 

  8. Mitsuhashi T, Ives HE (1988) Intracellular Cat+ requirement for activation of the Na/H exchanger in vascular smooth muscle cells. J Biol Chem 263: 8790–8795

    PubMed  CAS  Google Scholar 

  9. Berk B, Canessa M, Vallega G, Griesling C, Alexander RW (1988) Agonistmediated changes in intracellular pH: role in vascular smooth muscle cell function. J Cardiovasc Pharmacol 12: S104–114

    PubMed  CAS  Google Scholar 

  10. Hatori N, Fine BP, Cragoe E, Aviv A (1987) Angiotensin II effect on cytosolic pH in cultured rat vascular smooth muscle cells. J Biol Chem 262: 5073–5078

    PubMed  CAS  Google Scholar 

  11. Hilton PJ (1986) Cellular sodium transport in essential hypertension. N Engl J Med 314: 222–229

    Article  PubMed  CAS  Google Scholar 

  12. Blaustein MP (1984) Sodium transport in hypertension: where are we going? Hypertension 6: 445–453

    Article  PubMed  CAS  Google Scholar 

  13. Canessa M, Solomon H, Falkner B, Adragna N, Tosteson DC. Familial aggregation of sodium countertransport and essential hypertension. In: Villarreal H, Sambhi MP (eds) Topics of pathophysiology of hypertension. Nijhoff, Boston, pp 78–87

    Google Scholar 

  14. Lewitter FI, Canessa M (1985) Red cell transport studies in adult twins. Am J Hum Genet 36: 172

    Google Scholar 

  15. Canessa M, Spalvins A, Adragna M, Falkner B (1984) Red cell sodium counter-transport and cotransport in normotensive and hypertensive blacks. Hypertension 6: 344–351

    Article  PubMed  CAS  Google Scholar 

  16. Dadone MM, Hasstedt SJ, Hunt SC, Smith JB, Ash O, Williams RR (1984) Genetic analysis of sodium-lithium countertransport in 10 hypertension-prone kindreds. Am J Med Genet 17: 565–577

    Article  PubMed  CAS  Google Scholar 

  17. Hasstedt SJ, Wu LL, Owen-Ash K, Kuida H, Williams RR (1988) Hypertension and sodium-lithium countertransport in Utah pedigrees: evidence for major-locus inheritance. Am J Hum Genet 43: 14–22

    PubMed  CAS  Google Scholar 

  18. Boerwinkle E, Turner ST, Weinshilboum R, Johnson M, Richelson E, Sing CF (1986) Analysis of the distribution of erythrocyte sodium lithium cuntertransport in a sample representation of the general population. Genet Epidemiol 3: 365–378

    Article  PubMed  CAS  Google Scholar 

  19. Motulsky AG, Burke W, Billings PR, Ward RH (1987) Hypertension and the genetics of red cell membrane abnormalities. Ciba Found Symp 130: 150–166

    PubMed  CAS  Google Scholar 

  20. Redgrave J, Canessa M, Gleason R, Hollenberg NK, Williams GH (1989) Erythrocyte countertransport in non-modulating essential hypertension. Hypertension 13: 721–726

    Article  PubMed  CAS  Google Scholar 

  21. Escobales NE, Canessa M (1985) Ca-activated Na+ fluxes in human red cells: amiloride-sensitivity. J Biol Chem 260: 11914–11923

    PubMed  CAS  Google Scholar 

  22. Escobales N, Canessa M (1986) Amiloride-sensitive Na transport in human red cells: evidence for a Na/H exchange system. J Membr Biol 90: 21–28

    Article  PubMed  CAS  Google Scholar 

  23. Semplicini A, Canessa M (1989) Kinetic and stoichiometry of the red cell Na+/H+ exchange. J Membr Biol 107: 219–228

    Article  PubMed  CAS  Google Scholar 

  24. Morgan K, Canessa M, Goldzer R, Moore T, Williams GH (1988) Red cell Na+/H+ exchange has a defective H+ regulatory site in hypertensive patients with elevated Na+/Li+ exchange. Clin Res 36: 430a

    Google Scholar 

  25. Canessa M, Spalvins A, Escobales N (1986) Li/H and Li/Na exchange in human red cells: effect of proton gradients. Biophys J 49: 141a

    Google Scholar 

  26. Canessa M, Spalvins A (1987) Kinetic effect of internal and external H+ on Li/H and Li/Na exchange in human red cells. Biophys J 51: 567a

    Google Scholar 

  27. Canessa M, Morgan K, Semplicini A (1988) Genetic differences in lithium-sodium exchange and regulation of the sodium-hydrogen exchanger in essential hypertension. J Cardiovasc Pharmacol 12: S92–98

    PubMed  Google Scholar 

  28. Berk BC, Vallega G, Muslim AJ, Gordon HM, Canessa M, Alexander RW (1989) Spontaneously hypertensive rat vascular smooth muscle cells in culture exhibit increased growth and Na/H exchange. J Clin Invest 83: 822–829

    Article  PubMed  CAS  Google Scholar 

  29. Vallega G, Atkinson WW, Tsai E, Torielli L, Canessa M (1989) Milan hypertensive ( MHS) rat vascular smooth muscle cells exhibit increased growth and Na-K-Cl cotransport. FASEB J 3: A1187

    Google Scholar 

  30. Canessa M, Morgan K, Goldzer R, Moore TJ, Spalvins (1991) Kinetic abnormalities of the red cell sodium-proton exchange in hypertensive patients. Hypertension 17:340–348

    Google Scholar 

  31. Aronson PS (1985) Kinetic properties of the plasma membrane Na+/H+ exchanger. Annu Rev Physiol 47: 545–560

    Article  PubMed  CAS  Google Scholar 

  32. Sardet C, Franchi A, Pouyssegur J (1989) Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell 56: 271–280

    Article  PubMed  CAS  Google Scholar 

  33. Lifton RP, Sardet C, Pouyssegur J, Lalouel JM (1990) Cloning of the human genomic amiloride-sensitive NA/H antiporter gene; identification of genetic polymorphism and localization on the genetic map of chromosome IP. Genomics 7: 131–135

    Article  PubMed  CAS  Google Scholar 

  34. Lifton RP, Hunt SC, Williams RR, Poyssegur J, Lalouel JM (1991) Exclusion of the Na+/H+ antiporter as a candidate gene in essential hypertension. Hypertension 17: 8–14

    Article  PubMed  CAS  Google Scholar 

  35. Sardet C, Counillon L, Franchi A, Pouyssegur J (1990) Growth factors induce phosphorylation of the Na+/H+ antiporter, a glycoprotein of 110D. Science 247: 723–726

    Article  PubMed  CAS  Google Scholar 

  36. Resink TJ, Dimitrov D, Zschauer A, Erne P, Tkachuk VA, Buhler FR (1986) Platelet calcium-linked abnormalities in essential hypertension. Ann NY Acad Sci 488: 252–263

    Article  PubMed  CAS  Google Scholar 

  37. Erne P, Bole P, Burgisser E, Buhler FR (1984) Correlation of platelet calcium with blood pressure. N Engl J Med 310: 1084–1088

    Article  PubMed  CAS  Google Scholar 

  38. Oshima T, Matsuura H, Kido K, Matsumoto K, Fujii H et al. (1988) Intralumphocytic sodium and free calcium and plasma renin in essential hypertension. Hypertension 12: 26–31

    Article  PubMed  CAS  Google Scholar 

  39. Quan Sang KHL, Benlian P, Kanawati C, Montenay-Garestier, Meyer P, Devyinck MA (1985) Platelet cytosolic free calcium concentration in primary hypertension. J Hypertens 3: S33–36

    Google Scholar 

  40. Grinstein S, Rothstein A (1986) Mechanisms of regulation of the Na/H exchanger. J Membr Biol 90: 1–12

    Article  PubMed  CAS  Google Scholar 

  41. Moolenar WH, Tsien RY, Van der Saag PT, de Laat SW (1983) Na/H exchange and cytoplasmic pH in the action of growth factors in human fibroblasts. Nature 304: 645–648

    Article  Google Scholar 

  42. Miller RT, Pollock AS (1987) Modification of the internal pH sensitivity of the Na+/H+ antiporter by parathyroid hormone in a cultured renal cell line. J Biol Chem 262: 9115–9120

    PubMed  CAS  Google Scholar 

  43. Kahn AM (1985) Parathyroid hormone and dibutyril cAMP inhibit Na+/H+ exchange in renal brush border vesicles. Am J Physiol 248: F212–218

    PubMed  CAS  Google Scholar 

  44. Kravtsov GM, Dulin NO, Postnov YV (1988) Activity of protein kinase C in erythrocytes in primary hypertension. J Hypertens 6: 853–857

    Article  PubMed  CAS  Google Scholar 

  45. Huang Kuo-Pink (1989) The mechanism of protein-kinase C activation. Trends Neurosci 12: 425–450

    Article  Google Scholar 

  46. Aviv A (1988) The link between cytosolic Cat+ and Na+/H+ antiporter; a verifying factor for essential hypertension. J Hypertens 6: 685–691

    Article  PubMed  CAS  Google Scholar 

  47. Socorro I, Vallega G, Moore T. Canessa M (1990) Vascular smooth muscle cells from the Milan hypertensive rat exhibit decreased functional angiotensin II receptors. Hypertension 15: 591–599

    Article  PubMed  CAS  Google Scholar 

  48. Bak MI, Canessa ML, Warramm JH and Krowleski AS (1989) Differences in the activities of Na/H transport system in red blood cells of individuals with and without diabetic nephropathy. Clin Res 37: 551a

    Google Scholar 

  49. Semplicini A, Canessa M, Mozzato MG, Ceolotto G et al. (1989) Red blood cell Na/H exchange in subjects with essential hypertension. Am J Hypertens 2: 903–908

    PubMed  CAS  Google Scholar 

  50. Livne A, Veitch R, Grinstein S, Balfe JW, Marquez-Julio A, Rothstein A (1987) Increased platelet Na+/H+ exchange rates in essential hypertension: application of a novel test. Lancet I: 533–536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag Berlin • Heidelberg

About this paper

Cite this paper

Canessa, M. (1991). Regulation of the Na+/H+ Exchanger in Essential Hypertension: Functional and Genetic Abnormalities. In: Bruschi, G., Borghetti, A. (eds) Cellular Aspects of Hypertension. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00983-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00983-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00985-7

  • Online ISBN: 978-3-662-00983-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics