Effect of azadirachtin on the nutrition, development and biogenic amine levels in the Eastern Death’s Head hawk moth, Acherontia styx (lepidoptera: sphingidae)

  • Edward William Awad
  • Fabienne Eugénie Saadé
  • Mohammed Hadi Amiri
Part of the EBO — Experimental Biology Online Annual book series (EBOEXP, volume 1996/1997)


Previous studies have suggested the involvement of biogenic amines in insect metamorphic events and post-embryonic development. The effect of azadirachtin (AZ), a natural antifeedant and growth-disrupting compound, on the nutrition, development, and biogenic amine contents of the last instar larvae of the Eastern Death’s Head hawk moth, Acherontia styx, was examined. Single doses of AZ, injected into the haemolymph at day 1 post-ecdysis, inhibited food consumption in a dose-dependent manner (ED50 = 0.65±0.08 AZ/g body weight), and was found to be highly effective at producing pupal deformities and inhibiting larval growth (0.1–0.2 µg AZ/g body weight range). Biogenic amine contents, namely octopamine (OA), dopamine (DA) and serotonin (5-HT), in the brain and the haemolymph of 4-day-and 8 day-old larvae were analysed using high-performance liquid chromatography (HPLC) with an electrochemical detector (ECD). A dose-response relationship between AZ and biogenic amine contents in the brain and the haemolymph was also established. Low doses of AZ (0.1–0.2 µg AZ/g body weight) caused a dramatic reduction in OA and 5-HT levels in both the brain and the haemolymph. However, higher doses (0.9–1.2 µg AZ/g body weight) were needed to induce a significant reduction in DA levels. The significance of these findings in relation to the possibility of the involvement of biogenic amines in regulating metamorphic events in insects through mediation of juvenile hormone synthesis and/or release is discussed.

Key words

Acherontia styx Azadirachtin Biogenic amines Development Nutrition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnason, J.T., Philogene, B.J.R., Donskov, N., Hudon, M., McDougall, C., Fortier, G., Morand, P., Gardner, D., Lambert, J., Morris, C., Nozzollilo, C. (1985) Antifeedant and insecticidal properties of azadirachtin to the European Corn Borer, Ostrinia nubilalis. Entomolog. Exp. Appl. 38: 29–34Google Scholar
  2. Awad, E.W., Amiri, M.H., Stephen, R.S. (1997) Developmental changes in biogenic amine levels in the central nervous system and the haemolymph of the Eastern Death’s Head hawk Moth, Acherontia styx (Lepidoptera: Sphingidae). Comp. Biochem. Physiol. n6C: 219–225Google Scholar
  3. Baines, R.A., Downer, R.G.H. (1991) Pharmacological characterization of a 5-hydroxytryptamine-sensitive receptor/adenylate cyclase complex in the mandibular closer muscles of the cricket, Gryllus domestica. Arch. Insect Biochem. Physiol. 16: 153–163CrossRefGoogle Scholar
  4. Baines, R.A., Tyrer, N.H., Downer, R.G.H. (1990) Serotonergic innervation of the locust mandibular closer muscle modulates contractions through the elevation of cyclic adenosine monophosphate. J. Comp. Neurol. 294: 623–632 Google Scholar
  5. Banerjee, S. (1994) Serotonin immunoreactivity and its content in azadirachtin treated locusts. Symposium on Toxicology, Conservation and Biodiversity. Proc. Acad. Environ. Biol. 3: 25–31Google Scholar
  6. Banerjee, S., Rembold, H. (1992) Azadirachtin A interferes with control of serotonin pools in the neuroendocrine system of locusts. Naturwissenschaften 79: 81–84PubMedCrossRefGoogle Scholar
  7. Barnby, M.A., Klocke, J.A. (1987) Effects of azadirachtin on the nutrition and development of the tobacco budworm, Heliothis virescens (Fabr.) (Noctuidae). J. Insect Physiol. 33: 69–75Google Scholar
  8. Barnby, M.A., Klocke, J.A. (1990) Effects of azadirachtin on levels of ecdysteroids and prothoracicotropic hormone-like activity in Heliothis virescens (Fabr.) larvae. J. Insect Physiol. 36: 125–131CrossRefGoogle Scholar
  9. Barreteau, H., Goudey-Perrière, F., Perrière, C., Jacquot, C., Gayal, P., Grosclaude, J.-M., Brousse-Gaury, P. (1993) Influence of fasting and isolation on biogenic amine levels in the nervous system of the male cockroach Blaberus craniifer Burm. (Dictyoptera, Blaberidae). Comp. Biochem. Physiol. 105C :11–16Google Scholar
  10. Beckage, N.E., Metcalf, J.S., Nielson, B.D., Nesbit, D.J. (1988) Disruptive effects of azadirachtin on development of Cotesia congregata in host tobacco hornworm larvae. Arch. Insect Biochem. Physiol. 9: 47–65Google Scholar
  11. Bodnaryk, R.P. (1980) Changes in brain octopamine levels during metamorphosis of the moth, Mamestra configurata Wlk. Insect Biochem. 10: 169–173CrossRefGoogle Scholar
  12. Butterworth, J.H., Morgan, E.D. (1971) Investigation of the locust feeding inhibition of the seeds of the neem tree, Azadirachta indica. J. Insect Physiol. 17: 969–977Google Scholar
  13. Cantera, R., Carlberg, M. (1988) Serotonin levels in the central nervous system of the blow fly Calliphora erythrocephala during post-embryonic development. Insect Biochem. 18: 507–509CrossRefGoogle Scholar
  14. Classen, D.E., Kammer, A.E. (1986) Effects of octopamine, dopamine, and serotonin on production of flight motor output by thoracic ganglia of Manduca sexta. J. Neurobiol. 17: 1–14CrossRefGoogle Scholar
  15. Cook, B.J., Holman, G.M. (1978) Comparative pharmacological properties of muscle function in the foregut and the hindgut of the cockroach, Leucophaea maderae. Comp. Biochem. Physiol. 61C: 291–295Google Scholar
  16. Dorn, A., Rademacher, J.M., Sehn, E. (1986) Effects of Azadirachtin on the moulting cycle, endocrine system, and ovaries in last-instar larvae of the milkweed bug, Oncopeltus fasciatus. J. Insect Physiol. 32: 231–238CrossRefGoogle Scholar
  17. Downer, R.G.H., Hiripi, L. (1993) Biogenic amines in insects. In: Borkovec, A.B., Loeb, M.J. (eds) Insect neurochemistry and neuropharmacology 1993. CRC, Boca Raton, Fla., pp. 23–38Google Scholar
  18. Downer, R.G.H., Orr, G., Cole, G., Orchard, I. (1984) The role of octopamine and cyclic AMP in regulating hormone release from corpora cardiaca of the American cockroach. J. Insect Physiol. 30: 457–462Google Scholar
  19. Fagoonee, I. (1984) Effect of azadirachtin and of a neem extract on food utilization by Crocidolomia binotalis. In: Schmutterer, H., Ascher, K.R.S. (eds) Natural pesticides from the neem tree (Azadirachta indica A. Juss.) and other tropical plants. Proceedings of the 2nd International Neem Conference. German Agency for Technical Cooperation, Eschborn, Germany, pp. 211–223Google Scholar
  20. Fuzeau-Braesch, S., Coulon, J.F., David, J.C. (1979) Octopamine levels during the molt cycle and adult development in the migratory locust, Locusta migratoria. Experentia 35: 1349–1350Google Scholar
  21. Garcia, E.S., Rembold, H. (1984) Effects of azadirachtin on ecdysis of Rhodnius prolixus. J. Insect Physiol. 30: 939–941Google Scholar
  22. Garcia, E.S., Uhl, M., Rembold, H. (1986) Azadirachtin, a chemical probe for the study of moulting process in Rhodnius prolixus. Z. Naturforsch 41C: 771–775Google Scholar
  23. Geng, C., Sparks, T.C., Skomp, J.R., Gajewski, R.P. (1993) Biogenic amines in the brain of Manduca sexta during larval-pupal metamorphosis. Comp. Biochem. Physiol. 106 C: 275–284Google Scholar
  24. Gifford, A.N., Nicholson, R.A., Pitman, R.M. (1991) The dopamine and 5-hydroxytryptamine content of locust and cockroach salivary neurons. J. Exp. Biol. 161: 405–414Google Scholar
  25. Hirashima, A., Nagano, T., Eto, M. (1994) Effect of various insecticides on the larval growth and biogenic amine levels of Tribolium castaneum Herbst. Comp. Biochem. Physiol. 107C: 393–398Google Scholar
  26. Hukuhara, T., Satake, S., Sato, Y. (1981) Rhythmic contractile movements of the larval midgut of the silkworm, Bombyx mori. J. Insect Physiol. 27: 469–473Google Scholar
  27. Isman, M.B. (1993) Growth inhibitory and antifeedant effects of azadirachtin on six noctuids of regional economic importance. Pesticide Sci. 38 : 57-63Google Scholar
  28. Ivanovic, J., Jankovic-Hlandni, M., Stani, V., Kalafati, V. (1985) Differences in the sensitivity of protocerebral neurosecretory cells arising from the effect of different factors in Morimus funereus larvae. Comp. Biochem. Physiol. 8oA: 107–113Google Scholar
  29. Jaganadh, V., Nair, V.S.K. (1992) Azadirachtin-induced effects on larval-pupal transformation of Spodoptera mauritia. Physiol. Entomol. 17: 56–61CrossRefGoogle Scholar
  30. Jankovic-Hlandni, M., Ivanovi, J., Nenadovi, V., Stani, V. (1983) The selective response of the protocerebral neurosecretory cells of the Cerambyx cerdo larvae to the effect of different factors. Comp. Biochem. Physiol. 74A: 131–136CrossRefGoogle Scholar
  31. Kent, K.S., Hoskins, S.G., Hildebrand, J.G. (1987) A novel serotonin-immunoreactive neuron in the antennal lobe of the sphinx moth Manduca sexta persists throughout postembryonic life. J. Neurobiol. 18: 451–465Google Scholar
  32. Koul, O., Amanai, K., Ohtaki, T. (1987) Effect of azadirachtin on the endocrine events of Bombyx mori. J. Insect Physiol. 33: 103–108CrossRefGoogle Scholar
  33. Lafon-Cazal, M., Baehr, J.C. (1988) Octopaminergic control of corpora allata activity in an insect. Experentia 44: 895–896CrossRefGoogle Scholar
  34. Lange, A.B., Orchard, I., Barrett, F.M. (1989) Changes in hemolymph serotonin levels associated with feeding in the blood-sucking bug, Rhodnius prolixus. J. Insect Physiol. 35: 393–399Google Scholar
  35. Malczewska, M., Gelman, D.B., Cymborowski, B. (1988) Effects of azadirachtin on development, juvenile hormone and ecdysteroid titres in chilled Galleria mellonella larvae. J. Insect Physiol. 34: 725–732CrossRefGoogle Scholar
  36. Menzel, R. (1983) Neurobiology of learning and memory: the honeybee as a model system. Naturwissenschaften 70: 504–511PubMedCrossRefGoogle Scholar
  37. Mercer, A., Menzel, R. (1982) The effects of biogenic amines on conditioned and unconditioned responses to olfactory stimuli in the honeybee Apis mellifera. J. Comp. Physiol. 145: 363–368CrossRefGoogle Scholar
  38. Mordue (Luntz), A.J., Blackwell, A. (1993) Azadirachtin: an update. J. Insect Physiol. 39: 903–924Google Scholar
  39. Nathanson, J.A. (1979) Octopamine receptors, adenosine 3’,5’-monophosphate and neural control of firefly flashing. Science 203: 65–68PubMedCrossRefGoogle Scholar
  40. Orchard, I., Loughton, B.G. (1981) Is octopamine a transmitter mediating hormone release in insects? J. Neurobiol. 12: 143–153PubMedCrossRefGoogle Scholar
  41. Osman, M.Z. (1993) Effects of neem seed extracts on growth and development of larvae of Pieris brassicae L. (Lepidopetra, Pieridae). J. Appl. Entomol. 115: 254–258Google Scholar
  42. Pannabecker, T., Orchard, I. (1986) Octopamine and cAMP mediate release of adipokinetic hormone I and II from isolated locust neuroendocrine tissue. Mol. Cell Endocrinol. 48: 153–159CrossRefGoogle Scholar
  43. Ramirez, J.-M., Pearson, K.G. (1991) Octopaminergic modulation of interneurons in the flight system of the locust. J. Neurophysiol. 66: 1522–1537PubMedGoogle Scholar
  44. Redfern, R.E., Kelly, T.J., Borkove, A.B., Hayes, D.K. (1982) Ecdysteroid titers and molting aberrations in last stage Oncopeltus nymphs treated with insect growth regulators. Pest. Biochem. Physiol. 18: 351–356CrossRefGoogle Scholar
  45. Reese, J.C., Beck, S.D. (1976) Effects of allelochemics on Black Cutworm, Agrotis ipsilon: effects of p-benzoquinone, hydroquinone and duroquinone on larval growth, development and utilization of food. Ann. Ent. Soc. Am. 69: 59–67Google Scholar
  46. Rembold, H., Uhl, M., Müller, T. (1987) Effect of azadirachtin A on hormone titres during the gonadotrophic cycle of Locusta migratoria. In: Schmutterer, H., Ascher, K.R.S. (eds) Proceedings of the 3rd International Neem Conference. German Agency for Technical Cooperation, Eschborn, Germany, pp. 289–298Google Scholar
  47. Reynolds, S.E., Wing, K.D. (1986) Interactions between azadirachtin and ecdysteroid-dependent systems in the tobacco hornworm, Manduca sexta. Abstracts Vth International Congress on Pesticide Chemicals. IUPAC, Ottawa, Canada, P.2 D/E-08Google Scholar
  48. Schlüter, U., Bidmon, H.J., Grewe, S. (1985) Azadirachtin affects growth and endocrine events in larvae of the tobacco hornworm Manduca sexta. J. Insect Physiol. 31: 773–777Google Scholar
  49. Sieber, K.-P., Rembold, H. (1983) The effects of azadirachtin on the endocrine control of moulting in Locusta migratoria. J. Insect Physiol. 29: 523–527CrossRefGoogle Scholar
  50. Simmonds, M.S.J., Blaney, W.M., Ley, S.V., Anderson, J.C., Toogood, P.L. (1990) Azadirachtin: structural requirements for reducing growth and increasing mortality in lepidopterous larvae. Entomologia Exp. Appl. 55: 169–181CrossRefGoogle Scholar
  51. Smith, S.L., Mitchell, M.J. (1988) Effects of azadirachtin on insect cytochrome P-450 dependent ecdysone 20-mono oxygenase activity. Biochem. Biophys. Res. Commun. 154: 559–563Google Scholar
  52. Subrahmanyan, B., Müller, T., Rembold, H. (1989) Inhibition of turnover of neurosecretion by azadirachtin in Locusta migratoria. J. Insect Physiol. 35: 493–500CrossRefGoogle Scholar
  53. Sun, X.J., Tolbert, L.P., Hildebrand, J.G. (1993) Ramification pattern and ultrastructure characteristics of the serotonin-immunoreactive neuron in the antenna’ lobe of the moth Manduca sexta: a laser scanning confocal and electron microscope study. J. Comp. Neurol. 338: 5–16Google Scholar
  54. Takeda, N., Takaoka, H., Shimizu, T., Yazawa, M., Yagi, S. (1991) Biogenic amine levels in the central nervous system and haemolymph of the silkworm, Bombyx mori. Comp. Biochem. Physiol. 1ooC: 667–682Google Scholar
  55. Thompson, C.S., Yagi, K.J., Chen, Z.F., Tobe, S.S. (1990) The effects of octopamine on juvenile hormone biosynthesis, electrophysiology and cAMP content of the corpora allata of the cockroach Diploptera punctata. J. Comp. Physiol. 160 B: 241–249 Google Scholar
  56. Woodring, J.P., Meier, O.W., Rose, R. (1988) Effect of development, photoperiod and stress on octopamine levels in the house cricket Acheta domestica. J. Insect Physiol. 34: 759–765CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Edward William Awad
    • 1
  • Fabienne Eugénie Saadé
    • 1
  • Mohammed Hadi Amiri
    • 1
  1. 1.Department of Biology, Faculty of ScienceUnited Arab Emirates UniversityUSA

Personalised recommendations