Nuclear and cytosolic calcium levels in NIH 3T3 fibroblasts

  • S. Giovannardi
  • A. Peres
Part of the EBO — Experimental Biology Online Annual book series (EBOEXP, volume 1996/1997)


The spatial distribution of intracellular calcium in resting NIH 3T3 fibroblasts loaded with Fura-2 has been studied by digital image analysis. Calibration parameters were determined separately for the nucleus and the cytosol to take into account possible differences in the physico-chemical properties of the two compartments and were found not to differ significantly. The apparent resting calcium concentration in these cells was found to be significantly lower in the nucleus than in the cytoplasm; however, this difference appears to be an artefact arising from the presence in the cytoplasm of regions with higher calcium levels. Application of thapsigargin, to block active uptake of calcium into these compartments, substantially eliminated the differences between nuclear and cytosolic calcium concentrations. These observations indicate that nuclear and cytosolic calcium are in equilibrium in the resting fibroblasts and argue against the existence of diffusional barriers between these two compartments.

Key words

Cytosolic calcium Image analysis NIH3T3 fibroblasts Nuclear calcium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bachs, O., Agell, N., Carafoli, E. (1992) Calcium and calmodulin function in the cell nucleus. Biochim Biophys Acta 1113: 259–270PubMedCrossRefGoogle Scholar
  2. Bito, H., Deisseroth, K., Tsien, R.W. (1996) CREB phosphorylation and dephosphorylation: a Ca2+- and stimulus duration-dependent switch for hippocampal gene expression. Cell 87: 1203–1214PubMedCrossRefGoogle Scholar
  3. Brini, M., Marsault, R., Bastianutto, C., Pozzan, T., Rizzuto, R. (1994) Nuclear targeting of aequorin. A new approach for measuring nuclear Ca+ concentration in intact cells. Cell Calcium 16: 259–268PubMedCrossRefGoogle Scholar
  4. Chandra, S., Gross, D., Ling, Y.-C., Morrison, G.H. (1989) Quantitative imaging of free and total intracellular calcium in cultured cells. Proc Natl Acad Sci USA 86: 1870–1874PubMedCrossRefGoogle Scholar
  5. Connor, J.A. (1993) Intracellular calcium mobilization by inositol 1,4,5-trisphosphate: Intracellular movements and compartmentalization. Cell Calcium 14: 185–200PubMedCrossRefGoogle Scholar
  6. Deisseroth, K., Bito, H., Tsien, R.W. (1996) Signaling from synapse to nucleus: postsynaptic CREB phosphorylation during multiple forms of hippocampal synaptic plasticity. Neuron 16: 89–101Google Scholar
  7. Divecha, N., Banfic, H., Irvine, R.F. (1991) The polyphosphoinositide cycle exists in the nuclei of Swiss 3T3 cells under the control of a receptor (for IGF-I) in the plasma membrane, and stimulation of the cycle increases nuclear diacylglycerol and apparently induces translocation of protein kinase C to the nucleus. EMBO J 10: 3207–3214PubMedGoogle Scholar
  8. Dolmetsch, R.E., Lewis, R.S., Goodnow, C.C., Healy, J.I. (1997) Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 386: 855–858PubMedCrossRefGoogle Scholar
  9. Ginty, D.D. (1997) Calcium regulation of gene expression: isn’t that spatial? Neuron 18: 183–186PubMedCrossRefGoogle Scholar
  10. Grynkiewicz, G., Poenie, M., Tsien, R.Y. (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440–3450PubMedGoogle Scholar
  11. Hardingham, G.E., Chawia, S., Johnson, C.M., Bading, H. (1997) Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385: 260–265PubMedCrossRefGoogle Scholar
  12. Hernandez-Cruz, A., Sala, F., Connor, J.A. (1991) Stimulus-induced nuclear Ca2+ signals in fura-2-loaded amphibian neurons. Ann NY Acad Sci 635: 416–420PubMedCrossRefGoogle Scholar
  13. Himpens, B., De Smedt, H., Droogmans, G., Casteels, R. (1992) Differences in regulation between nuclear and cytoplasmic Ca2+ in cultured smooth muscle cells. Am J Physiol 263: C95–C105Google Scholar
  14. Inesi, G., Sagara, Y. (1992) Thapsigargin, a high affinity and global inhibitor of intracellular Ca+ transport ATPases. Arch Biochem Biophys 298: 313–317PubMedCrossRefGoogle Scholar
  15. Lanini, L., Bachs, O., Carafoli, E. (1992) The calcium pump of the liver nuclear membrane is identical to that of endoplasmic reticulum. J Biol Chem 267: 11548–1552PubMedGoogle Scholar
  16. Malviya, A.N., Rogue, P., Vincendon, G. (1990) Stereospecific inositol 1,4,5-[32P]trisphosphate binding to isolated rat liver nuclei: Evidence for inositol trisphosphate receptor-mediated calcium release from the nucleus. Proc Natl Acad Sci USA 87: 9270–9274PubMedCrossRefGoogle Scholar
  17. Moore, E.D.W., Becker, P.L., Fogarty, K.E., Williams, D.A., Fay, F.S. (1990) Ca2+ imaging in single living cells: theoretical and practical issues. Cell Calcium ii: 157–179Google Scholar
  18. Nicotera, P., McConkey, D.J., Jones, D.P., Orrenius, S. (1989) ATP stimulates Ca2+ uptake and increases the free Ca2+ concentration in isolated rat liver nuclei. Proc Natl Acad Sci USA 86: 453–457PubMedCrossRefGoogle Scholar
  19. Nicotera, P., Orrenius, S., Nilsson, T., Berggren, P.-O. (1990) An inositol 1,4,5-trisphosphate-sensitive Ca2+ pool in liver nuclei. Proc Natl Acad Sci USA 87: 6858–6862PubMedCrossRefGoogle Scholar
  20. Payrastre, B., Nievers, M., Boonstra, Breton, M., Verkleij, A.J., Van Bergen en Henegouwen, P.M.P. (1992) A differential location of phosphoinositide kinases, diacylglycerol kinase, and phospholipase C in the nuclear matrix. J Biol Chem 267: 5078–5084Google Scholar
  21. Poenie, M. (1990) Alteration of intracellular Fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11: 85–91PubMedCrossRefGoogle Scholar
  22. Poenie, M., Alderton, J., Steinhardt, R.A., Tsien, R.Y. (1986) Calcium rises abruptly and briefly throughout the cell at the onset of anaphase. Science 233: 886–869PubMedCrossRefGoogle Scholar
  23. Thastrup, O., Cullen, P.J., Drobak, B.K., Hanley, M.R., Dawson, A.P. (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87: 2466–2470PubMedCrossRefGoogle Scholar
  24. Tucker, R.W., Fay, F.S. (1990) Distribution of intracellular free calcium in quiescent BALB/c 3T3 cells stimulated by platelet-derived growth factor. Eur J Cell Biol 51: 120–127PubMedGoogle Scholar
  25. Waybill, M.M., Yelamarty, R.V., Zhang, Y., Scaduto, R.C., Jr., Lalloue, K.F., Hsu, C.-J., Smith, B.C., Tillotson, D.L., Yu, F.T.S., Cheung, J.Y. (1991) Nuclear calcium gradients in cultured rat hepatocytes. Am J Physiol Endocrinol Metab 261: E49 - E57Google Scholar
  26. Williams, D.A., Fay, F.S. (1990) Intracellular calibration of the fluorescent calcium indicator Fura-2. Cell Calcium 11: 75–83PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • S. Giovannardi
    • 1
  • A. Peres
    • 1
  1. 1.Laboratorio di Fisiologia cellulare e molecolare, DBSF — Dipartimento di Biologia Strutturale e FunzionaleUniversità di MilanoVareseItaly

Personalised recommendations