Three-dimensional organization of actin cytoskeleton and podosomal contact structures in neoplastic cells in vitro

  • Pavel Vesely
  • Luboslava Pavlikova
  • Jiri Plachy
  • Katerina Trejbalova
  • Jiri Hejnar
  • Eva Matouskova
  • Jürgen Bereiter-Hahn
Part of the EBO — Experimental Biology Online Annual book series (EBOEXP, volume 1996/1997)


In spontaneously metastasizing rat RPS sarcoma cells, a 3D structure of oblique F-actin cables was observed which was associated with active cell migration in vitro. This led us to further comparative investigations of several other neoplastic and normal cell populations in vitro for F-actin structures using confocal laser scanning microscopy (CLSM). Various forms of F-actin cytoskeleton were observed and the incidence of podosome-related contact structures appeared to be associated with malignancy, interpreted as metastatic capacity.

Key words

Actin cytoskeleton Neoplastic cells Podosomal contact structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bereiter-Hahn, J., Vesely, P. (1994) Reflection interference microscopy. In: Cellis, J.E. (ed) Cell biology: a laboratory handbook, part 2, vol. 7A. Academic Press, San Diego, pp. 15–24Google Scholar
  2. Chen, W.T. (1989) Proteolytic activity of specialized surface protrusions formed at rosette contact sites of transformed cells. J. Exp. Zool. 251: 167–185.PubMedCrossRefGoogle Scholar
  3. Chen, W.T. (1990) Transmembrane interactions at cell adhesion and invasion sites. Cell Differ. Dev. 32: 329–335.PubMedCrossRefGoogle Scholar
  4. Chen, W.T. (1996) Proteases associated with invadopodia, and their role in degradation of extracellular matrix. Enzyme Prot. 49: 59–71.Google Scholar
  5. Dutartre, H., Davoust, J., Gorvel, J.P., Chavrier, P. (1996) Cytokinesis arrest and redistribution of actin-cytoskeleton regulatory components in cells expressing the Rho GTPase CDC42Hs. J. Cell Sci. 109: 367–377.PubMedGoogle Scholar
  6. Felice, G.R., Eason, O., Nermut, M.V., Kellie, S. (1990) pp6ov-src association with the cytoskeleton induces actin reorganization without affecting polymerization status. Eur. J. Cell Biol. 52: 47–59.Google Scholar
  7. Flanagan, A.M., Horton, M.A., Dorey, E.L., Collins, D.A., Evely, R.S., Moseley, J.M., Firkin, F.C., Chambers, T.J., Helfrich, M.H., Martin, T.D.J. (1992) An assessment of the ability of human bone marrow cultures to generate osteoclasts. Hit. J. Pathol. 73: 387–401.Google Scholar
  8. Flynn, D. C., Leu, T.H., Reynolds, A.B., Parsons, J.T. (1993) Identification and sequence analysis of cDNAs encoding a no-kilodalton actin filament-associated ppóosrc substrate. Mol. Cell. Biol. 13: 7892–7900.PubMedGoogle Scholar
  9. Gavazzi, I., Nermut, M.V., Marchisio, P.C. (1989) Ultrastructure and gold-immunolabelling of cell-substratum adhesions (podosomes) in RSV-transformed BHK cells. J. Cell Sci. 94: 85–99.PubMedGoogle Scholar
  10. Guiliano, K.A., Taylor, D.L. (1990) Formation, transport, contraction, and disassembly of stress fibres in fibroblasts. Cell Motil. Cytoskeleton 16: 14–21.CrossRefGoogle Scholar
  11. Hall, C.L., Lange, L.A, Prober, D.A., Zhang, S., Turley, E.A. (1996) pp6o c-src is required for cell locomotion regulated by the hyaluronan receptor RHAMM. Oncogene 13: 2213–2224.PubMedGoogle Scholar
  12. Jockusch, B.M., Haemmerli, G., In Albon, A. (1983) Cytoskeletal organization in locomoting cells of the V2 rabbit carcinoma. Exp. Cell. Res. 144: 251–263.Google Scholar
  13. Liotta, L.A., Starcke, M.L., Aznavoorian, S.A., Beckner, M.E., Schiffmann, E. (1991) Tumour cell motility. Semin. Cancer. Biol. 2: 111–114.PubMedGoogle Scholar
  14. Matouskova, E., Zicha, D., Urbanec, P., Vesely, P. (1990) Quasi-dynamic test of in vitro cell migration developed to characterize dividing cells of spontaneously metastasizing rat sarcomas. Folia Biol. (Praha) 36: 117–129.Google Scholar
  15. Matouskova, E., Vogtova, D., Koenigova, R. (1993) A recombined skin composed of human keratinocytes cultured on cell-free pig dermis. Burns 19: 118–123.PubMedCrossRefGoogle Scholar
  16. Monsky, W.L., Chen-Yong, L., Aoyama, A., Kelly, T., Akiyama, S.K., Mueller, S.C., Chen, W.T. (1994) A potential marker protease of invasiveness, seprase, is localized on invadopodia of human malignant melanoma cells. Cancer Res. 54: 5702–5710.PubMedGoogle Scholar
  17. Neet, K., Hunter, T. (1995) The nonreceptor protein-tyrosine kinase CSK complexes directly with the GTPase-activating protein-associated p62 protein in cells expressing v-Src or activating c-Src. Mol. Cell. Biol. 15: 4908–4920.PubMedGoogle Scholar
  18. Nobes, C.D., Hall, A. (1995) Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62.PubMedCrossRefGoogle Scholar
  19. Nermut, M.V., Eason, P., Hirst, E.M., Kellie, S. (1991) Cell/substratum adhesions in RSV-transformed rat fibroblasts. Exp. Cell Res. 193: 382–397.PubMedCrossRefGoogle Scholar
  20. Osborn, M., Born, T., Koitsch, H.J., Weber, K. (1978) Stereo immunofluorescence microscopy: I. Three-dimensional arrangement of microfilaments, microtubules and tonofilaments. Cell 14: 477–488.PubMedCrossRefGoogle Scholar
  21. Pokorna, E., Jordan, P.W., O’Neill, C.H., Zicha, D., Gilbert, C.S., Vesely, P. (1994) Actin cytoskeleton and motility in rat sarcoma cell populations with different metastatic potential. Cell Motil. Cytoskeleton 28: 25–33.PubMedCrossRefGoogle Scholar
  22. Ralph, P., Prichard, J., Cohn, M. (1975) Reticulum cell sarcoma: an effector cell in antibody-dependent cell-mediated immunity. J. Immunol. 114: 898–905.PubMedGoogle Scholar
  23. Ruenger, T.M., Klein, C.E., Becker, J.C., Broecker, E.B. (1994) The role of genetic instability, adhesion, cell motility, and immune escape mechanisms in melanoma progression. Curr Opin Oncol 6: 188–196.CrossRefGoogle Scholar
  24. Schuuring, E., Verhoeven, E., Litvinov, S., Michalides, R.J. (1993) The product of the EMS1 gene, amplified and overexpressed in human carcinomas, is homologous to a v-src substrate and is located in cell-substratum contact sites. Mol. Cell. Biol. 13: 2891–2898.PubMedGoogle Scholar
  25. Slack, J.K., Higgins, P.J. (1996) Cytoarchitecture and cell growth control. Cell Motil. Cytoskeleton 33: 83–87.PubMedCrossRefGoogle Scholar
  26. Stoker, M.G.P., O’Neill, C., Berryman, S., Waxman, V. (1968) Anchorage and growth regulation in normal and virus-transformed cells. Int. J. Cancer 3: 683–693.PubMedCrossRefGoogle Scholar
  27. Svoboda, J., Plachy, J., Hejnar, J., Karakoz, I., Guntaka, R.V., Geryk, J. (1992) Tumor induction by the LTR, v-src, LTR DNA in four B (MHC) congenic lines of chickens. Immunogenetics 35: 309–315.PubMedCrossRefGoogle Scholar
  28. Tarone, G., Cirillo, D., Giancotti, F.G., Comoglio, P.M., Marchisio, P.C. (1985) Rous sarcoma virus-transformed fibroblasts adhere primarily at discrete protrusions of the ventral membrane called podosomes. Exp. Cell Res. 159: 141–157.PubMedCrossRefGoogle Scholar
  29. Vaananen, H.K., Horton, M. (1995) The osteoclast clear zone is a specialized cell-extracellular matrix adhesion structure. J. Cell Sci. 108: 2729–2732.PubMedGoogle Scholar
  30. Vesely, P., Weiss, R.A. (1973) Cell locomotion and contact inhibition of normal and neoplastic rat cells. Int. J. Cancer 11: 64–76.PubMedCrossRefGoogle Scholar
  31. Vesely, P., Chaloupkova, A., Urbanec, P., Urbancova, H., Bohac, L., Krchnakova, E., Franc, F., Sprincl, L., Vousden, K., Moss, R., Heaysmann, J., Dilly, P.N. (1987a) Patterns of in vitro behaviour characterizing cells of spontaneously metastasizing K2M rat sarcoma. Folia Biol. (Praha) 33: 307–324.Google Scholar
  32. Vesely, P., Bershadsky, A.D., Kren, V., Wyke J. (1987b) Partial reappearance of actin cables in rat tumour cells supertransformed by avian retrovirus B77 in vitro. Wiss. Ztschr. Friedrich-Schiller-Univ. Jena, Naturwiss. R, 36: 192–197.Google Scholar
  33. Vesely, P., Urbanec, P., Zicha, D., Chaloupkova, A., Matouskova, E., Urbancova, H., Krchnakova, E. (1989a) Patterns of in vitro locomotory behaviour characterizing cells of spontaneously metastasizing rat sarcomas. In: Kotyk, A., Skoda, J., Paces, V., Kostka,V. (eds) Highlights of modern biochemistry VSP International Publishers, pp. 973–981.Google Scholar
  34. Vesely, P., Melezinkova, H., Krenova, D., Kren, V., Matouskova, E., Chaloupkova, A. (1989b) Spontaneously metastasizing rat sarcomas LW13K2 and RPS: assessment by the immunogenetic test of malignancy, in vitro behaviour and karyology. Folia Biol. (Praha) 35: 1–12.Google Scholar
  35. Wang, Y.L. (1984) Reorganization of actin filament bundles in living fibroblasts. J. Cell Biol. 99: 1478–1485.PubMedCrossRefGoogle Scholar
  36. Zicha, D., Pokorna, E., Urbanec, P., Chaloupkova, A., Vesely, P. (1993) Acid pH induced persistent motility in vitro of metastasizing sarcoma cells. J. Comput Assist Microsc 5: 273–279.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • Pavel Vesely
    • 1
  • Luboslava Pavlikova
    • 1
  • Jiri Plachy
    • 1
  • Katerina Trejbalova
    • 1
  • Jiri Hejnar
    • 1
  • Eva Matouskova
    • 1
  • Jürgen Bereiter-Hahn
    • 2
  1. 1.Institute of Molecular GeneticsAcademy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Cinematic Cell Research GroupBiocentre, Johann Wolfgang Goethe UniversityFrankfurt am MainGermany

Personalised recommendations