Evaluation of Myocardial Function Using Power Indices

  • P. Spiller
  • R. Unterberg
  • J. Jehle
  • R. Körfer
  • B. Pölitz
  • F. K. Schmiel
Conference paper


The assessment of myocardial performance in the intact heart is usually based upon the concept of an inverse relationship between force and velocity. Since Sonnenblick showed that the velocity of the contractile element VCE is proportional to the relative rate of pressure rise during the isovolumic phase, this scheme has been applied to several experimental and clinical studies [3–7, 9, 14, 15]. Although controversy still exists as to the proper choice of the muscle model and as to the comparability of Vmax from different subjects, there is general agreement that the rate of pressure rise cannot be interpreted in the case of valvular insufficiency [1, 10, 13]. The parameters of the ejection phase, too, are dependent on the loading conditions of the ventricle. An acute increase of the afterload, for instance, combined with no change of contractility results in a reduction of the ejection fraction and of the velocity of fiber shortening [8, 12].


Aortic Stenosis Myocardial Function Power Index Aortic Insufficiency Myocardial Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Den Bos GC, Elzinga G, Westerhof N, Noble MIM (1973) Problems in the use of indices of myocardial contractility. Cardiovasc Res 7: 834PubMedCrossRefGoogle Scholar
  2. 2.
    Dodge HT, Kennedy JW, Petersen JL (1973) Quantitative angiocardiographic methods in the evaluation of valvular heart disease. Progr Cardiovasc Dis 16: 1CrossRefGoogle Scholar
  3. 3.
    Gunther S, Grossman W (1979) Determinants of ventricular function in pressure-overload hypertrophy in man. Circulation 59: 679PubMedCrossRefGoogle Scholar
  4. 4.
    Huber D, Grimm J, Koch R, Krayenbuehl HP (1981) Determinants of ejection performance in aortic stenosis. Circulation 64: 126PubMedCrossRefGoogle Scholar
  5. 5.
    Kochhäuser M, Jehle J, Neuhaus KL, Spiller P (1978) Systolische und diastolische Myokardfunktion bei druckbelastetem linken Ventrikel. Z Kardiol 67: 583PubMedGoogle Scholar
  6. 6.
    Krayenbuehl HP, Rutishauser W, Amende I, Mehmel H (1973) High-fidelity left ventricular pressure measurements for the assessment of cardiac contractility in man. Am J Cardiol 31: 415PubMedCrossRefGoogle Scholar
  7. 7.
    Levine HJ (1967) Muscle mechanics in the in situ heart. In: Tanz RD, Kavaler F, Roberts J (eds) Factors influencing myocardial contractility. Academic, New YorkGoogle Scholar
  8. 8.
    Mahler F, Ross J, O’Rourke RA, Covell JW (1975) Effects of changes in preload, afterload, and inotropic state on ejection and isovolumic phase measures of contractility in the conscious dog. Am J Cardiol 35: 626PubMedCrossRefGoogle Scholar
  9. 9.
    Mason DT, Spann JF, Zelis R (1970) Quantification of the contractile state of the intact human heart. Am J Cardiol 26: 248PubMedCrossRefGoogle Scholar
  10. 10.
    Pollack GH, Huntsmann LL, Verdugo P (1972) Cardiac muscle models. Circ Res 31: 569PubMedCrossRefGoogle Scholar
  11. 11.
    Rackley CR, Dodge HT, Coble YD, Hay RE (1964) A method for determining left ventricular mass in man. Circulation 29: 666PubMedCrossRefGoogle Scholar
  12. 12.
    Rönsberg D, Benn M, Karsch KR, Kreuzer H, Neuhaus KL, Spiller P (1978) Der Einfluß der Nachbelastung auf normales und ischämisches Myokard beim Hund. Z Kardiol 67: 595PubMedGoogle Scholar
  13. 13.
    Sonnenblick EH (1974) Contractility in the intact heart: progress and problems. Eur J Cardiol 1: 319PubMedGoogle Scholar
  14. 14.
    Spann JF, Bove AA, Natarajan G, Kreulen T (1980) Ventricular performance, pump function and compensatory mechanisms in patients with aortic stenosis. Circulation 62: 576PubMedCrossRefGoogle Scholar
  15. 15.
    Weber KT, Janicki JS (1977) Instantaneous force-length-relations: experimental findings and clinical correlates. Am J Cardiol 40: 740PubMedCrossRefGoogle Scholar
  16. 16.
    Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as an elipsoidal shell. Am Heart J 75: 649PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • P. Spiller
    • 1
  • R. Unterberg
    • 1
  • J. Jehle
    • 1
  • R. Körfer
    • 1
  • B. Pölitz
    • 1
  • F. K. Schmiel
    • 1
  1. 1.Medizinische Klinik und PoliklinikUniversität DüsseldorfGermany

Personalised recommendations