Advertisement

Testosterone pp 204-218 | Cite as

Effects of androgens on bone metabolism

  • Joel S. Finkelstein
  • Anne Klibanski

Abstract

Osteoporosis is one of the leading causes of morbidity and mortality in the elderly (Riggs and Melton 1986). Approximately 1.2 million osteoporotic fractures occur in the United States annually and the total cost of osteoporosis to our society each year exceeds 6 billion dollars (Riggs and Melton 1986). Even though osteoporosis is less common in men than in women, it can lead to significant morbidity when present (Swartz and Young 1988). By the age of 90, one of every six men will have fractured his hip, an event associated with mortality and serious morbidity rates of 15% and 50%, respectively.

Keywords

Bone Mass Bone Density Gonadal Steroid Serum Testosterone Level Trabecular Bone Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albright F, Smith PH, Richardson AM (1941) Postemopausal osteoporosis. JAMA 116: 2465–2474CrossRefGoogle Scholar
  2. Albright F, Reifenstein EC (1948) Metabolic bone disease: osteoporosis. In: Albright F, Reifenstein EC (eds). The parathyroid glands and metabolic bone disease. Williams and Wilkins, Baltimore, pp. 145–204Google Scholar
  3. Aloia JF, Vaswani AN, Yek JK, Ross P, Ellis K, Cohn SH (1983) Determinants of bone mass in postmenopausal women. Arch Intern Med 143: 1700–1704PubMedCrossRefGoogle Scholar
  4. Axelrod DW, Lachman DB, Judge D, Mallette LE, Gagel RF (1989) Resorptive hypercalciuria and increased interleukin 1 in a young male with hypogonadism and osteoporosis: reversal with androgen treatment. Clin Res 37: 21 A (abst)Google Scholar
  5. Baran DT, Bergfeld MA, Teilelbaum SL, Avioli LV (1978) Effect of testosterone therapy on bone formation in an osteoporotic hypogonadal male. Calcif Tissue Res 26: 103–106PubMedCrossRefGoogle Scholar
  6. Buchanon JR, Hospodar P, Myers C, Leuenberger P, Demers LM (1988) Effect of excess endogenous androgens on bone density in young women. J Clin Endocrinol Metab 67: 937–943CrossRefGoogle Scholar
  7. Burkart SL, Beresford WA (1978) An osteoporosis after the castration of full-grown rats. Anat Rec 190: 351–352 (abst)Google Scholar
  8. Canalis E, McCarthy T, Centrella M (1988) Growth factors and the regulation of bone modelling. J Clin Invest 81: 277–281PubMedCrossRefGoogle Scholar
  9. Canalis E, Centrella M, Burch W, McCarthy TL (1989) Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J Clin Invest 83: 60–65PubMedCrossRefGoogle Scholar
  10. Cann CE, Genant HK, Ettinger B, Gordan GS (1980) Spinal mineral loss in oophorectomized women. JAMA 244: 2056–2059PubMedCrossRefGoogle Scholar
  11. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral risk. Bone 6: 1–7PubMedCrossRefGoogle Scholar
  12. Centrella M, Canalis E (1985) Local regulators of skeletal growth, a perspective. Endocr Rev 6: 544–551PubMedCrossRefGoogle Scholar
  13. Chambers TJ, McSheehy PMJ, Thomson BM, Ruiler K (1985) The effect of calcium-regulating hormones and prostaglandins on bone resorption by osteoclasts disaggregated from neonatal rabbit bones. Endocrinology 116: 234–239PubMedCrossRefGoogle Scholar
  14. Chesney RW, Mazess RB, Rose P (1987) Single-photon absorptiometry and dual-photon absorptiometry in children. In: Genant H (ed) Osteoporosis update 1987. University of California Printing Services, San Francisco, pp 241–246Google Scholar
  15. Christiansen C, Christensen MS, Transbol I (1981) Bone mass in postmenopausal women after withdrawal of oestrogen/gestagen replacement therapy. Lancet 1: 459–461PubMedCrossRefGoogle Scholar
  16. Colvard DS, Eriksen EF, Keeting PE, Wilson EM, Lubahn DB, French FS, Riggs BL, Spelsberg TC (1989) Identification of androgen receptors in normal human osteoblast-like cells. Proc Natl Acad Sci 86: 854–857PubMedCrossRefGoogle Scholar
  17. Davidson BJ, Ross RK, Paganini-Hill A, Hammond GD, Siiteri PK, Judd LH (1982) Total and free estrogens and androgens in postmenopausal women with hip fractures. J Clin Endocrinol Metab 54: 115–120PubMedCrossRefGoogle Scholar
  18. Davidson BJ, Riggs BL, Wahner HW, Judd HL (1983) Endogenous cortisol and sex steroids in patients with osteoporotic spinal fractures. Obstet Gynecol 61: 275–278PubMedGoogle Scholar
  19. Deslypere JP, Vermeulen A (1984) Leydig cell function in normal men: effect of age, lifestyle, residence, diet, and activity. J Clin Endocrinol Metab 59: 955–962PubMedCrossRefGoogle Scholar
  20. Eriksen EF, Colvard DS, Berg NJ, Graham ML, Mann KG, Spelsberg TC, Riggs BL (1988) Evidence of estrogen receptors in normal human osteoblast-like cells. Science 241: 84–86PubMedCrossRefGoogle Scholar
  21. Finkelstein JS, Klibanski A, Neer RM, Greenspan SL, Rosenthal DI, Crowley WF (1987) Osteoporosis in men with idiopathic hypogonadotropic hypogonadism. Ann Intern Med 106: 354–361PubMedGoogle Scholar
  22. Finkelstein JS, Klibanski A, Neer RM, Doppelt SH, Rosenthal DI, Segre GV, Crowley WF (1989) Increases in bone density during treatment of men with idiopathic hypogonadotropic hypogonadism. J Clin Endocrinol Metab 69: 776–783PubMedCrossRefGoogle Scholar
  23. Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C (1983 a) Testosterone and bone loss in Klinefelter syndrome. Horm Metab Res 15: 56–57CrossRefGoogle Scholar
  24. Foresta C, Busnardo B, Ruzza G, Zanatta G, Mioni R (1983 b) Lower caicitonin levels in young hypogonadic men with osteoporosis. Horm Metab Res 15: 206–207CrossRefGoogle Scholar
  25. Foresta C, Ruzza G, Mioni R, Guarneri G, Gribaldo R, Meneghello A, Mastrogiacomo I (1984) Osteoporosis and decline of gonadal function in the elderly male. Horm Res 19: 18–22PubMedCrossRefGoogle Scholar
  26. Foresta C, Zanatta GP, Busnardo B, Scanelli G, Scanelli C (1985) Testosterone and calcitonin plasma levels in hypogonadal osteoporotic young men. J Endocrinol Invest 8: 377–379PubMedGoogle Scholar
  27. Francis RM, Peacock M, Aaron JE, Selby PL, Taylor GA, Thompson J, Marshall DH, Horsman A (1986) Osteoporosis in hypogonadal men: role of decreased plasma 1,25-dihydroxy vitamin D, calcium malabsorption, and low bone formation. Bone 7: 261–268PubMedCrossRefGoogle Scholar
  28. Gilsanz V, Gibbens DT, Roe TF, Carlson M, Senac MO, Boechat MI, Huang HK, Schulze EE, Libanati CR, Cann CC (1988) Vertebral bone density in children: effect of puberty. Radiology 166: 847–850PubMedGoogle Scholar
  29. Greenspan SL, Neer RM, Ridgway EC, Klibanski A (1986) Osteoporosis in men with hyperprolactinemic hypogonadism. Ann Intern Med 104: 777–782PubMedGoogle Scholar
  30. Greenspan SL, Oppenheim DS, Klibanski A (1989) Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann Intern Med 110: 526–531PubMedGoogle Scholar
  31. Hock JM, Gera I, Fonseca J, Raisz LG (1988) Human parathyroid hormone-(1–34) increases bone mass in ovariectomized and orchidectomized rats. Endocrinology 122: 2899–2904PubMedCrossRefGoogle Scholar
  32. Hui SL, Johnston CC, Mazess RB (1985) Bone mass in normal children and young adults. Growth 49: 34–43PubMedGoogle Scholar
  33. Jackson JA, Kleerekoper M, Parfitt AM, Rao DS, Villanueva AR, Frame B (1987) Bone histomorphometry in hypogonadal and eugonadal men with spinal osteoporosis. J Clin Endocrinol Metab 65: 53–58PubMedCrossRefGoogle Scholar
  34. Johnston CC, Hui SL, Witt RM, Appledorn R, Baker RS, Longcope C (1985) Early menopausal changes in bone mass and sex steroids. J Clin Endocrinol Metab 61: 905–911PubMedCrossRefGoogle Scholar
  35. Klibanski A, Biller BMK, Rosenthal DI, Schoenfeld DA, Saxe V (1988) Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab 67: 124–130PubMedCrossRefGoogle Scholar
  36. Krabbe S, Christiansen C, Rodbro P, Transbol I (1979) Effect of puberty on rates of bone growth and mineralisation: with observations in male delayed puberty. Arch Dis Child 54: 950–953PubMedCrossRefGoogle Scholar
  37. Krabbe S, Christiansen C, Rodbro P, Transbol I (1980) Pubertal growth as reflected by simultaneous changes in bone mineral content and serum alkaline phosphatase. Acta Paediatr Scand 69: 49–52PubMedCrossRefGoogle Scholar
  38. Krabbe C, Christiansen C (1984) Longitudinal study of calcium metabolism in male puberty. I. Bone mineral content, and serum levels of alkaline phosphatase, phosphate and calcium. Acta Paediatr Scand 73: 745–749PubMedCrossRefGoogle Scholar
  39. Krabbe C, Hummer L, Christiansen C (1984) Longitudinal study of calcium metabolism in male puberty. II. Relationship between mineralization and serum testosterone. Acta Paediatr Scand 73: 750–755PubMedCrossRefGoogle Scholar
  40. Lips P, Asscheman H, Uitewaal P, Netelenbos JC, Gooren L (1989) The effect of cross-gender hormonal treatment on bone metabolism in male-to-female transsexuals. J Bone Min Res 4: 657–662CrossRefGoogle Scholar
  41. Manolagas SC, Anderson DC, Lindsay R (1979) Adrenal steroids and the development of osteoporosis in oophorectomised women. Lancet 2: 597–600PubMedCrossRefGoogle Scholar
  42. Marshall DH, Crilly RG, Nordin BEC (1977) Plasma androstenedione and oestrone levels in normal and osteoporotic postmenopausal women. Br Med J 2: 1177–1179PubMedCrossRefGoogle Scholar
  43. Mazess RB, Cameron JR (1974) Bone mineral content in normal U. S. whites. In: Mazess RB (ed) Proceedings, International Conference on Bone Mineral Measurement. Washington DC: NIAMDD, DHEW publication NIH 75–683, pp 228–238Google Scholar
  44. Meier DE, Orwoll ES, Jones JM (1984) Marked disparity between trabecular and cortical bone loss with age in healthy men. Measurement by vertebral computed tomography and radial photon absorptiometry. Ann Intern Med 101: 605–612PubMedGoogle Scholar
  45. Nachtigall LE, Nachtigall RH, Nachtigall RD, Beckman EM (1979) Estrogen replacement therapy I: a 10 year prospective study in the relationship to osteoporosis. Obstet Gynecol 53: 277–281PubMedGoogle Scholar
  46. Nordin BEC, Robertson A, Seamark RF, Bridges A, Philcox JC, Need AG, Horowitz M, Morris HA, Deam S (1985) The relation between calcium absorption, serum dehydroepiandrosterone, and vertebral mineral density in postmenopausal women. J Clin Endocrinol Metab 60: 651–657PubMedCrossRefGoogle Scholar
  47. Ogata E, Shimazawa E, Suzuki H, Yoshitoshi Y, Asano H, Ando H (1970) Androgens and enhancement of hypocalcemic response to thyrocalcitonin in rats. Endocrinology 87: 421–426PubMedCrossRefGoogle Scholar
  48. Riggs BL, Ryan RJ, Wahner HW, Jiang NS, Mattox VR (1973) Serum concentrations of estrogen, testosterone and gonadotropins in osteoporotic and nonosteoporotic postmenopausal women. J Clin Endocrinol Metab 36: 1097–1099PubMedCrossRefGoogle Scholar
  49. Riggs BL, Melton LJ (1986) Involutional osteoporosis. N Engl J Med 314: 1676–1686PubMedCrossRefGoogle Scholar
  50. Rigotti NA, Neer RM, Jameson JL (1986) Osteopenia and bone fractures in a man with anorexia nervosa and hypogonadism. JAMA 256: 385–388PubMedCrossRefGoogle Scholar
  51. Rus BJ, Krabbe S, Christiansen C, Catherwood BD, Deftos LJ (1985) Bone turnover in male puberty: a longitudinal study. Calcif Tissue Int 37: 213–217CrossRefGoogle Scholar
  52. Rubens R, Dhont M, Vermeulen A (1974) Further studies on Leydig cell function in old age. J Clin Endocrinol Metab 39: 40–45PubMedCrossRefGoogle Scholar
  53. Saville PD (1969) Changes in skeletal mass and fragility with castration in the rat: a model of osteoporosis. J Am Geriatr Soc 17: 155–166PubMedGoogle Scholar
  54. Schoutens A, Verhas M, L’Hermite-Baleriaux M, L’Hermite M, Verschaeren A, Dourov N, Mone M, Heilporn A, Tricot A (1984) Growth and bone haemodynamic responses to castration in male rats. Reversibility by testosterone. Acta Endocrinol 107: 428–432PubMedGoogle Scholar
  55. Schweikert HU, Rulf W, Niederle N, Schafer HE, Keck E, Kruck F (1980) Testosterone metabolism in human bone. Acta Endocrinol 95: 258–264PubMedGoogle Scholar
  56. Seeman E, Melton U, O’Fallon WM, Riggs BL (1983) Risk factors for spinal osteoporosis in men. Am J Med 75: 977–983PubMedCrossRefGoogle Scholar
  57. Smith DA, Anderson JB, Shimmins J, Speirs CF, Barnett E (1969) Changes in metacarpal mineral content and density in normal male and female subjects with age. Clin Radiol 20: 23–31PubMedCrossRefGoogle Scholar
  58. Smith DAS, Walker MS (1977) Changes in plasma steroids and bone density in Klinefelter’s syndrome. Calcif Tissue Res 22 (suppl): 225–228PubMedCrossRefGoogle Scholar
  59. Stearns EL, MacDonnell JA, Kaufman BJ, Padua R, Lucman TS, Winter JSD, Faiman C (1974) Declining testicular function with age. Hormonal and clinical correlates. Am J Med 57: 761–766PubMedCrossRefGoogle Scholar
  60. Stepan JJ, Lachman M, Zverina J, Pacovsky V, Baylink DJ (1989) Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab 69: 523–527PubMedCrossRefGoogle Scholar
  61. Swartz CM, Young MA (1988) Male hypogonadism and bone fracture. N Engl J Med 318: 996PubMedGoogle Scholar
  62. Verhas M, Schoutens A, L’Hermite-Baleriaux M, Dourov N, Verschaeren A, Mone M, Heilporn A (1986) The effect of orchidectomy on bone metabolism in aging rats. Calcif Tissue Int 39: 74–77PubMedCrossRefGoogle Scholar
  63. Vermeulen A (1990) Androgens and male senescence. In: Nieschlag E, Behre HM (eds) Testosterone: Action, deficiency, substitution. Springer Verlag, Heidelberg, pp 261–276Google Scholar
  64. Wink CS, Felts WJL (1980) Effects of castration on the bone structure of male rats: a model for osteoporosis. Calcif Tissue Int 32: 77–82PubMedCrossRefGoogle Scholar
  65. Wolanski N (1967) Changes in bone density and cortical thickness of the second metacarpal between the ages of 3 and 74 years as a method for investigating bone mineral metabolism. Acta Anat 67: 74–94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Joel S. Finkelstein
  • Anne Klibanski

There are no affiliations available

Personalised recommendations