Advertisement

Eigenschaften und Dimensionierung von Koaxialkabeln, Streifenleitungen, Finleitungen, Richtkopplern und Hochfrequenzfiltern

  • F. Arndt
  • R. Briechle
  • R. Dill
  • T. Motz
  • B. Rembold
  • H. Stocker
  • H. Vollhardt
  • O. Zinke
Chapter
  • 103 Downloads
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Analog dem in der Leitungstheorie verwendeten Begriff des Leitungswellenwiderstandes benutzt man bei der Behandlung von Feldern den sog. „Feldwellenwiderstand“. Unter dem Feldwellenwiderstand1 Z F versteht man bei einer rein fortschreitenden Welle das Verhältnis der transversalen Feldkomponenten E und H:
$${{Z}_{F}} = \frac{E}{H}.$$
(4.1/1)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Schelkunoff, S. A.: Electromagnetic Waves. New York 1951.Google Scholar
  2. 2.
    Gutzmann, F.: Zur Wahl des richtigen Wellenwiderstandes von Hochfrequenzkabeln. NTZ 7 (1954) 136–139.Google Scholar
  3. 3.
    Braun, R.: Das Feld der koaxialen Reuse. Diplomarbeit D 292. Institut für Hochfrequenztechnik, TH Darmstadt 1963.Google Scholar
  4. 4.
    Kirschstein, F.: Über den günstigsten Querschnitt des symmetrischen Breitbandkables. ENT 13 (1936) 283–295.Google Scholar
  5. 5.
    Kaden, H.: Über den Verlustwiderstand von Hochfrequenzleitern. Arch. Elektrotechn. 28 (1934) 818–825.CrossRefGoogle Scholar
  6. 6.
    Kessler, A.; Vlcek, A. Zinke, O.: Methoden zur Bestimmung von Kapazitäten unter besonderer Berükischtigung der Teilflächenmethode. AEÜ 16 (1962) 365–380.Google Scholar
  7. 7.
    Rauskolb, R. F.; Landvogt, G. F.: Über günstigste Querschnittsabmessungen von Doppelleitungen und symmetrischen Breitbandkabeln hinsichtlich Leistung, Spannung, Festigkeit und Dämpfung, AEU 18 (1964) 67–76.Google Scholar
  8. 8.
    Sommer, F.: Die Berechnung der Kapazitäten bei Kabeln mit einfachem Querschnitt. ENT 17 (1940) 281–294.Google Scholar
  9. 9.
    Meinke, H.; Scheuber, A.: Zylindersymmetrische Bauelemente koaxialer Leitungen. NTZ 5 (1952) 109–114.Google Scholar
  10. 10.
    Meinke, H.: Theorie der Hochfrequenzschaltungen. München 1951, S. 263–270.Google Scholar
  11. 11.
    Krüger, P.; Landvogt, G. F.: Studienarbeit St. 283. Institut für Hochfrequenztechnik, T. H. Darmstadt 1962.Google Scholar
  12. 12.
    Stöhr, W.; Zinke, O.: Wege zum optimalen Breitbandrundstrahler. Frequenz 14 (1960) 26–35.CrossRefGoogle Scholar
  13. 13.
    Ess, A.: Beitrag zur Frage der Anpassung an den freien Raum. Zürich 1951.Google Scholar
  14. 14.
    Küpfmüller, K.: Einführung in die theoretische Elektrotechnik. Berlin, Göttingen, Heidelberg. Springer 1959, 83–85.zbMATHGoogle Scholar
  15. 15.
    Zinke, O.: Anwendung Maxwellscher und Kirchhoffscher Gleichungen auf homogene Lecher-Leitungen beliebiger Leitergeometrie. NTZ 24 (1971) 369–374.Google Scholar
  16. 16.
    Graf, H.; Krank, W.: Ein Beitrag zur Berechnung der Eigenschaften von Streifenleitungen verschiedener Querschnittsform. Frequenz 22 (1968) 235–244.CrossRefGoogle Scholar
  17. 17.
    Cohn, S. B.: Problems in Strip Transmission Lines. Trans. IRE, vol. MTT, 3 (1955) 119–126.CrossRefGoogle Scholar
  18. 18.
    Brenner, H. E.: Use a Computer to Design Suspended-Substrate IC’S. Microwaves 7 (1968) 38ff.Google Scholar
  19. 19.
    Wheeler, H. A.: Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet. IEEE Trans. vol. MTT, 13 (1965) 112–185.Google Scholar
  20. 20.
    Microwave Handbook and Buyers Guide (1969) 67 (verbesserte Kurve zu [26]).Google Scholar
  21. 21.
    Toussaint, H. N.; Hoffmann, R.: Integriete Mikrowellenschaltungen–Stand und Tendenzen der Enwicklung. Frequenz 25 (1971) 100–110.CrossRefGoogle Scholar
  22. 22.
    Schmitt. H. J.; Sarges, K. H.: Wave Propagation in Microstrip. NTZ 24 (1971) 260–264.Google Scholar
  23. 23.
    Kowalski, G.; Pregla, R.: Dispersion Characteristics of Shielded Microstrips with Finite Thickness. AEU 25 (1971) 193–196. Dispersion Characteristics of Single and Coupled Microstrips. AEU 26 (1972) 276–280.Google Scholar
  24. 24.
    Troughton, P.: Measurement Techniques in Microstrip. Electronic Letters 23rd, 5 (1969) 25–26.CrossRefGoogle Scholar
  25. 25.
    Pucel, R. A.: Masse, D. J.; Hartwig, C. P.: Losses in Microstrip. IEEE Trans. vol. MTT, 16 (1968) 342.Google Scholar
  26. 26.
    Caulton, A.; Hughes, J. J.; Sobol, H.: Measurements on the Properties of Microstrip Transmission Lines for Microwave Integrated Circuits. RCA Rev. 27 (1966) 377–391.Google Scholar
  27. 27.
    Unger, H.-G.: Theorie der Leitungen. Braunschweig: Vieweg 1967, S. 105–125.Google Scholar
  28. 28.
    Klein, W.: Die Theorie gekoppelter parallellaufender Leitungen. AEU 22 (1968) 343–349.Google Scholar
  29. 29.
    Lorenz, R. W.: Über Lecher-Wellen, Leitungs-Wellen und TEM-Wellen auf verlustbehafteten Mehrleitersystemen und die Bedeutung der Diffusionsgleichung zur Ermittlung der Leitungsbeläge. Frequenz 25 (1971) 208–215.CrossRefGoogle Scholar
  30. 30.
    Arndt, F.: Ortsabhängig elektromagnetisch gekoppelte TEM-Wellenleitungen als Breitband-Richtkoppler. Darmstädter Dissertation 1968, S. 67–72.Google Scholar
  31. 31.
    Zurmühl, R.: Praktische Mathematik für Ingenieure und Physiker. Berlin, Heidelberg New York: Springer 1965, S. 105–203.zbMATHCrossRefGoogle Scholar
  32. 32.
    Cohn, S. B.: Shielded coupled-strip transmission line. IRE Trans. on Microwave Theory and Techniques, MTT, 3 (1955) 19–38.Google Scholar
  33. 33.
    Jones, E. M. T.; Bolljahn, J. T.: Coupled-strip transmission line filters and directional couplers. IRE Trans. on Microwave Theory and Techniques, MTT, 4 (1956) 75–81.CrossRefGoogle Scholar
  34. 34.
    Matthaei, G. L.; Young, L.; Jones, E. M. T.: Microwave filters, impedance-matching networks, and coupling structures. New York: McGraw-Hill 1964, S. 163–197.Google Scholar
  35. 35.
    Bryant, T. G.; Weiss, J. A.: Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans. on Microwave Theory and Techniques, MTT, 16 (1968) 1021–1027.CrossRefGoogle Scholar
  36. 36.
    Wolf, H.: Gekoppelte Hochfrequenzleitungen als Richtkoppler. NTZ 9 (1956) 375–382.Google Scholar
  37. 37.
    Arndt, F.: Ortsabhängig elektromagnetisch gekoppelte TEM-Wellenleitungen als Hochpaß-Richtkoppler. AEÜ 23 (1969) 242–250.Google Scholar
  38. 38.
    Wolf, H.: Zur Theorie des Reflektometers. AEÜ 8 (1954) 505–512.Google Scholar
  39. 39.
    Arndt, F.: Tables for asymmetric Chebyshev high-pass TEM-mode directional couplers. IEEE Trans. on Microwave Theory and Techniques, MTT, 18 (1970) 633–638.CrossRefGoogle Scholar
  40. 40.
    Ramo, S.; Whinnery, J. R.: Felder und Wellen in der modernen Funktechnik. Berlin: Verlag Technik 1960, S. 252–254.Google Scholar
  41. 41.
    Wagner, K. W.: Induktionswirkungen von Wanderwellen in Nachbarleitungen. ETZ 35 (1914) 639–643, 677–680, 705–708.Google Scholar
  42. 42.
    Wallot, J.: Einführung in die Theorie der Schwachstromtechnik. Berlin: Springer, 1. Aufl. 1931, 7. Aufl. 1944, S. 217.Google Scholar
  43. 43.
    Klein, W.: Die Theorie des Nebensprechens auf Leitungen. Berlin, Göttingen, Heidelberg: Springer 1955.CrossRefGoogle Scholar
  44. 44.
    Dennhart, A.: 40 Jahre Funkenstörung. Grundzüge der Optimierung der Bestimmungen für Funkentstörung. NTZ 24 (1971) 202–206.Google Scholar
  45. 45.
    Jungfer, H.: Die Messung des Kopplungswiderstandes von Kabelabschirmungen bei hohen Frequenzen. NTZ 9 (1956) 553–560.Google Scholar
  46. 46.
    Caswell, W. E.; Schwartz, R. F.: The directional coupler–1966. IEEE Trans. on Microwave Theorie and Techniques, MTT, 15 (1967) 120–123.CrossRefGoogle Scholar
  47. 47.
    Grünberger, G. K.; Meinke, H. H.: Experimenteller und theoretischer Nachweis der Längsfeldstärken in der Grundwele der Mikrowellenstreifenleitung. NTZ 24 (1971) 364–368.Google Scholar
  48. 48.
    Arndt, F.; Hoffmann, M.: Äqui-ExtremwerT, Polynome und Synthese von 90°-Kopplern. AEÜ 26 (1972) 105–110.Google Scholar
  49. 49.
    Fritzsche, H.: Die frequenzabhängigen Übertragungseigenschaften gekoppelter Streifenleitungen im geschichteten Dielektrikum. NTZ 26 (1973) 1–8.Google Scholar
  50. 50.
    Arndt, F.: Anwendung der Ähnlichkeitstransformation bei Microstrip-Leitungen. NTZ 26 (1973) 46–49.Google Scholar
  51. 51.
    Hoffmann, R. K.: Integrierte Mikrowellenschaltungen. Berlin, Heidelberg, New York: Springer 1983.Google Scholar
  52. 52.
    Gupta, K. C.; Ramesh Garg; Bahl, I. J.: Microstrip lines and slotlines, Dedham, Mass.: Artech House 1979.Google Scholar
  53. 53.
    Bahl, I. J.; Trivedi, D. K.: A designers guide to microstrip line. Microwaves 16 (1977) 174–182.Google Scholar
  54. 54.
    Janssen, W.: Hohlleiter und Streifenleiter. Heidelberg: Hüthig 1977.Google Scholar
  55. 55.
    Ermert, H.: Guided modes and radiation: Characteristics of covered microstrip lines. Arch. Elektronik Übertragungstechn. 30 (1976) 65–70.Google Scholar
  56. 56.
    Ermert, H.: Ein Verfahren zur Berechnung der Dispersion und der Feldverteilung von Wellentypen auf einer Mikrostreifenleitung. Habilitationsschrift, Univ. Erlangen, 1975.Google Scholar
  57. 57.
    Cohn, S. B.: Characteristic impedance of the shielded-strip transmission line. IRE Trans. Microwave Theory Tech. MTT, 2 (1954) 52–57.CrossRefGoogle Scholar
  58. 58.
    Jahnke, Emde, Lösch: Tafeln höherer Funktionen. Stuttgart: Teubner 1960.Google Scholar
  59. 59.
    Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions. New York: Dover 1972.zbMATHGoogle Scholar
  60. 60.
    Hilberg, W.: Charakteristische Größen elektrischer Leitungen. Stuttgart: Berliner Union 1971.Google Scholar
  61. 61.
    Wheeler, H. A.: Formulas for the skin effect. Proc. IRE 30 (1942) 412–424.CrossRefGoogle Scholar
  62. 62.
    Wheeler, H. A.: Transmission-line properties of a strip on a dielectric sheet on a plane. IEEE Trans. Microwave Theory Tech. MTT, 25 (1977) 631–647.CrossRefGoogle Scholar
  63. 63.
    Schneider, M. V.: Microstrip lines for microwave integrated circuits. Bell Syst. Tech. J. 48 (1969) 1421–1444.Google Scholar
  64. 64.
    Stinehelfer, H. E., Sr.: An accurate calculation of uniform microstrip transmission lines. IEEE Trans. Microwave Thoery Tech MTT, 16 (1968) 439–444.CrossRefGoogle Scholar
  65. 65.
    Yamashita,E., Mittra, R.: Variation method for the analysis of microstrip lines. IEEE Trans. Microwave Theory Tech. MTT, 16 (1968) 251–256.CrossRefGoogle Scholar
  66. 66.
    Silvester, P.: TEM-Wave properties of microstrip transmission lines. Proc. IEEE 115 (1968) 43–48.Google Scholar
  67. 67.
    Weeks, W. T.: Calculation of coefficients of capacitance of multiconductor transmission lines in the presence of a dielectric interface. IEEE Trans. Microwave Theory Tech. MTT, 18 (1970) 35–43.CrossRefGoogle Scholar
  68. 68.
    Clemm, H. L.: Berechnung von Kapazität and Wellenwiderstand der Streifenleitung auf einem dielektrischen Träger (Mikrostrip) mit Hilfe der Teilflächenmethode. Frequenz 23 (1969) 143–151.MathSciNetCrossRefGoogle Scholar
  69. 69.
    Farrar, A.; Adams, A.T.: Characteristic impedance of microstrip by the method of moments. IEEE Trans. Microwave Theory Tech. MTT, 18 (1970) 65–66.CrossRefGoogle Scholar
  70. 70.
    Siegl, J.; Tulaja, V.; Hoffmann, R.: General analysis of interdigitated microstrip couplers. Siemens Forsch, Entwicklungsber, 10 (1981) 228–236.Google Scholar
  71. 71.
    Hammerstad, E.; Jensen, 0.: Accurate models for microstrip computer-aided design. IEEE MTT, S Internat. Microwave Symp. Digest (1980) 407–409.Google Scholar
  72. 72.
    Oberhettinger, F.; Magnus, W.: Anwendungen der elliptischen Funktionen in Physik and Technik. Berlin: Springer 1949.Google Scholar
  73. 73.
    Magnus, W.; Oberhettinger, F.: Die Berechnung des Wellenwiderstandes einer Bandleitung mit kreisförmigem bzw. rechteckigem Außenleiterquerschnitt. Arch. Elektrotech. 37 (1943) 380–390.MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Maesel, M.: A theoretical and experimental investigation of coupled microstrip lines. (ELAB-Report TE-168, April 1971 ). Norwegian Institute of Technology, University Trondheim.Google Scholar
  75. 75.
    Getsinger, W. J.: Microstrip dispersion model. IEEE Trans. Microwave Theory Tech. MTT, 21 (1973) 34–39.CrossRefGoogle Scholar
  76. 76.
    Carlin, H. J.: A simplified circuit model for microstrip. IEEE Trans. Microwave Theory Tech. MTT, 21 (1973) 589–591.CrossRefGoogle Scholar
  77. 77.
    Jain, O. P.; Makios, V.; Chudobiak, W. J.: Coupled-mode model of dispersion in microstrip. Electronics Letters 7 (1971) 405–407.CrossRefGoogle Scholar
  78. 78.
    Pucel, A.; Massé, D. J.; Hartwig, C. P.: Correction to “Losses in microstrips”. IEEE Trans. Microwave Theory Tech. MTT, 16 (1968) 1064.Google Scholar
  79. 79.
    Welch, J. D., Pratt, H. J.: Losses in microstrip transmission systems for integrated microwave circuits. NEREM Rec. 8 (1966) 100–101.Google Scholar
  80. 80.
    Schneider, M. V.: Dielectric loss in integrated microwave circuits. Bell Syst. Tech. J. 48 (1969) 2325–2332.Google Scholar
  81. 81.
    Belohoubek, E,; Denlinger, E.: Loss considerations for microstrip resonators. IEEE Trans. Microwave Theory Tech. MTT, 23 (1975) 522–526.CrossRefGoogle Scholar
  82. 82.
    van der Pauw, L. J.: The radiation of electromagnetic power by microstrip configurations. IEEE Trans. Microwave Theory Tech. MTT, 25 (1977) 719–725.CrossRefGoogle Scholar
  83. 83.
    Wen, C. P.: Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device application. IEEE Trans. Microwave Theory Tech. MTT, 17 (1969) 1087–1090.CrossRefGoogle Scholar
  84. 84.
    Davis, M. E.; Williams, E. W.; Celestini, A. C.: Finite boundary corrections to the coplanar waveguide analysis. IEEE Trans. Microwave Theory Tech. MTT, 21 (1973) 594–596.CrossRefGoogle Scholar
  85. 85.
    Kuchanov, E. S.: Capacitance of a planar stripline allowing for the dielectric substrate width. Telecomm. Radio Engng. 29–30 (1975) 127–128.Google Scholar
  86. 86.
    Fujiki, Y.; u.a.: Higher-order modes in coplanar-type transmission lines. Electronics Comm. in Japan 58-B (1975) 74–80.Google Scholar
  87. 87.
    Knorr, J. B.; Kuchler, K. D.: Analysis of coupled slots and coplanar strips on dielectric substrate. IEEE Trans. Microwave Theory Tech. MTT, 23 (1975) 541–548.CrossRefGoogle Scholar
  88. 88.
    Owyang, G. H.; Wu, T.T.: The approximate parameters of slot lines and their complement. IRE Trans. Antennas Propagation 6 (1958) 49–55.CrossRefGoogle Scholar
  89. 89.
    Jansen, R.: Computer analysis of edge-coupled planar structures. Electronics Letters 10 (1974) 520–521.CrossRefGoogle Scholar
  90. 90.
    Zinke, O.: Beitrag zur geschlossenen Näherungsdarstellung elliptischer Integrale. Z. angew. Math. Mech. 21 (1941) 114–118.MathSciNetGoogle Scholar
  91. 91.
    Gupta, K. C.; Ramesh Garg; Rakesh Chadha: Computer-aided design of microwave circuits. Dehdam, Mass.: Artech House 1981.Google Scholar
  92. 92.
    Kompa, G.; Mehran, R.: Planar waveguide model for calculating microstrip components. Electronics Letters 11 (1975) 459–460.CrossRefGoogle Scholar
  93. 93.
    Owens, R. P.: Predicted frequency dependence of microstrip characteristic impedance using the planar waveguide model. Electronics Letters 12 (1976) 269–270.CrossRefGoogle Scholar
  94. 94.
    Pues, H. F.; van de Capelle, A. R.: Accurate formulas for frequency dependence of microstrip parameters. Electronics Letters 16 (1980) 870–872.CrossRefGoogle Scholar
  95. 95.
    Getsinger, W. J.: Measurement of the characteristic impedance of microstrip over a wide frequency range. 1982 IEEE MIT, S International Symposium Digest, Juni 1982, 342–349.Google Scholar
  96. 96.
    Denlinger, E. J.: Losses of microstrip lines. IEEE Trans. Microwave Theory Tech. MTT, 28 (1980) 513–522.CrossRefGoogle Scholar
  97. 97.
    Denlinger, J.: A frequency dependent solution for microstrip transmission lines. IEEE Trans. Microwave Theory Tech. MTT, 19 (1971) 30–39.CrossRefGoogle Scholar
  98. 98.
    Howe, H., Jr.: Stripline circuit design. Dedham, Mass.; Artech House 1974.Google Scholar
  99. 99.
    Wheeler, H. A.: Transmission line properties of a stripline between parallel planes. IEEE Trans. Microwave Theory Tech. MTT, 26 (1978) 866–876.CrossRefGoogle Scholar
  100. 100.
    Yamashita, E.; Atsuki, K.: Analysis of thick-strip transmission lines. IEEE Trans. Microwave Theory Tech. MTT, 19 (1971) 120–122.CrossRefGoogle Scholar
  101. 101.
    Yamashita, E.; Atsuki, K.: Stripline with rectangular outer conductor and three dielectric layers. IEEE Trans. Microwave Theory Tech. MTT, 18 (1970) 238–244.CrossRefGoogle Scholar
  102. 102.
    Davies, J. B.; Mirshekar-Syahkal, D.: Spectral domain solution of arbitrary coplanar transmission lines with multilayer substrate. IEEE Trans. Microwave Theory Tech. MTT, 25 (1977) 143–146.CrossRefGoogle Scholar
  103. 103.
    Mirshekar-Syahkal, D.; Davies, J. B.: Accurate solution of microstrip and coplanar structures for dispersion and for dielectric conductor losses. IEEE Trans. Microwave Theory Tech. MTT, 27 (1979) 694–699.CrossRefGoogle Scholar
  104. 104.
    Wen, C. P.: Attenuation characteristics of coplanar waveguides. Proc. IEEE 58 (1970) 141–142.CrossRefGoogle Scholar
  105. 105.
    Kitazawa, T.; Hayashi, Y.; Suzuki, M.: A coplanar waveguide with thick metal coating. IEEE Trans. Microwave Theory Tech. MTT, 24 (1976) 604–608.CrossRefGoogle Scholar
  106. 106.
    Hanna, V. F.: Finite boundary corrections to coplanar stripline analysis. Electronics Letters 15 (1979), 1. Febr., 88–90.Google Scholar
  107. 107.
    Spielmann, B. E.: Dissipation loss effects in isolated and coupled transmission lines. IEEE Trans. Microwave Theory Tech. MTT, 25 (1977) 648–656.CrossRefGoogle Scholar
  108. 108.
    Cohn, S. B.: Slotline on a dielectric substrate. IEEE Trans. MTT, 17 (1969) 768–778.Google Scholar
  109. 109.
    Citerne, J.; u.a.: Fundamental and higher order modes in miscroslot lines. Proc. 5th EuMC (1975), S. 273–277.Google Scholar
  110. 110.
    Knorr, J. B.; Kuchler, K. D.: Analysis of coupled slots and coplanar strips on dielectric substrates. IEEE Trans. MTT, 23 (1975) 541–548.Google Scholar
  111. 111.
    Galejs, J.: Excitation of slots in a conducting screen above a lossy dielectric half space. IRE Trans. AP-10 (1962) 436–443.Google Scholar
  112. 112.
    Mariani, E. A.; u.a.: Slot line characteristics. IEEE Trans. MTT, 17 (1969) 1091–1096.Google Scholar
  113. 113.
    Meier, P. J.: Two new integrated-circuit media with special advantages at millimeter wavelength. Sympos. Digest IEEE MTT, S (1972), S. 221–223.Google Scholar
  114. 114.
    Meier, P. J.: Equivalent relative permittivity and unloaded Q-factor of integrated fin-line. Electronics Letters 9 (1973) 162–163.CrossRefGoogle Scholar
  115. 115.
    Hofmann, H.: Fin-line dispersion. Electronics Letters 12 (1976) 428–429.CrossRefGoogle Scholar
  116. 116.
    Hofmann, H.: Dispersion of planar waveguides for mm-wave applications. Ad) 31 (1977) 40–44.Google Scholar
  117. 117.
    Siegl, J.: Phasenkonstante and Wellenwiderstand einer Schlitzleitung mit rechteckigem Schirm and endlicher Metallisierungsdicke. Frequenz 31 (1977) 216–220.CrossRefGoogle Scholar
  118. 118.
    Meier, P. J.: Integrated Fin-line millimeter components. IEEE Trans. MTT, 22 (1974) 1209–1216.Google Scholar
  119. 119.
    Bates, R. N.; Colemann, M. D.: Fin-line for microwave integrated circuits (MIC’s) at Ka-band (27–40 GHz). Philips Research Labs. Redhill Ann. Rev. (1978), S. 67–68.Google Scholar
  120. 120.
    Gysel, U. H.: A 26,5 to 40 GHz planar balanced mixer. Sympos. Digest 5. Europ. Mikrow. Konf. (1975), S. 491–495.Google Scholar
  121. 121.
    Hofmann, H.; Meinel, H.; Adelseck, B.: New integrated mm-wave components using fin-lines. IEEE MTT, S Digest (1978), S. 21–23.Google Scholar
  122. 122.
    Adelseck, B.; u. a.: Advances in millimeter–wave components and systems. AGARD Conf. on Millimeter and Sub–Millimeter Wave Propagation and Circuits (1978), S. 25–1–25–17.Google Scholar
  123. 123.
    Rembold, B.: Planare Wellenleiter für integrierte Millimeterwellenschaltkreise. URSI-Konferenz, Kleinheubacher Berichte (1980), S. 161–170.Google Scholar
  124. 124.
    Solbach, K.: The status of printed mm-wave E-plane circuits. IEEE Trans. MTT, 31 (1983) 107–121.Google Scholar
  125. 125.
    Piotrowski, J. K.: Accurate and simple formulas for dispersion in fin-lines. IEEE MTT, S Digest (1984), S. 333–335.Google Scholar
  126. 126.
    Sharma, A. K.; Hoefer, W. J. R.: Empirical expressions for fin-line design. IEEE Trans. MTT, 31 (1983) 350–356.Google Scholar
  127. 127.
    Saad, A. M. K.; Schünemann, K.: A simple method for analyzing fin-line structures. IEEE Trans. MTT, 26 (1978) 1002–1007.Google Scholar
  128. 128.
    Itoh, T.; Mittra, R.: Dispersion characteristics of slot lines. Electronics letters 7 (1971) 364–365.CrossRefGoogle Scholar
  129. 129.
    Itoh, T.: Spectral domain immitance approach for dispersion characteristics of shielded microstrips with tuning septums. IEEE MTT, 28 (1980) 733–736.Google Scholar
  130. 130.
    Schmidt, L.-P.; Itoh, T.: Spectral domain analysis of dominant and higher order modes in fin-lines. IEEE MTT, 28 (1980) 981–985.Google Scholar
  131. 131.
    Schmidt, L.-P.; Itoh, T.; Hofmann, H.: Characteristics of unilateral fin-lines structures with arbitrarily located slots. IEEE MTT, 29 (1981) 352–355.Google Scholar
  132. 132.
    Schmidt, L.-P.; Menzel, W.: Berechnung der Leitungsparameter quasiplanarer Wellenleiter für integrierte Millimeterwellen-Schaltungen. Wiss. Ber. AEG-Telefunken 54 (1981) 219–226.Google Scholar
  133. 133.
    Schmidt, L. -P.: Private Mitteilung (1984).Google Scholar
  134. 134.
    Meinel, H.; Rembold, B.: New millimeter-wave fin-line attenuators and switches. IEEE MTT, S Symp. Digest (1979), S. 249–252.Google Scholar
  135. 135.
    Willing, H. A.; Spielmann, B. E.: Experimental assessment of bilateral fin-line impedance for device matching. IEEE MTT, S Symp. Digest (1981), S. 105–107.Google Scholar
  136. 136.
    Arndt, F.; Bornemann, J.; Vahldieck, R.; Grauerholz, D.: E-plane integrated circuit filters with improved stopband attenuation. IEEE Trans. on MTT 32 (1984) 1391–1394.Google Scholar
  137. 137.
    Callsen, H.; Meinel, H.: PIN-Dioden-Dämpfungsglieder und -schalter in Finleitungstechnik. Wiss. Ber. AEG-Telefunken 54 (1981) 227–232.Google Scholar
  138. 138.
    Meinel, H.; Callsen, H.: Fin-line PIN-diode attenuators and switches for the 94 GHz range. Electronics Letters 18 (1982) 541–542.CrossRefGoogle Scholar
  139. 139.
    Menzel, W.; Callsen, H.: Integrated fin-line components and subsystems at 60 and 94 GHz. IEEE Trans. MTT, 31 (1983).Google Scholar
  140. 140.
    Meier, P. J.: Millimeter integrated circuit suspended in the E-plane of rectangular wave guide. IEEE MTT, 26 (1978) 726–733.MathSciNetGoogle Scholar
  141. 141.
    Adelseck, B.; u.a.: A survey of planar integrated millimeter-wave components. Radio Electron. Eng. 52 (1982) 46–50.Google Scholar
  142. 142.
    Callsen, H.: A fin-line PIN-diode attenuator and switch for the 140 GHz range. 8th Intern. Conf. on IR and MM-Waves (1983), Conf. Dig. F 3. 4.Google Scholar
  143. 143.
    Gysel, U. H.: A 26,5 to 40 GHz planar balanced mixer. 5th EuMC, Hamburg (1975), Symp. Dig., S. 491–495.Google Scholar
  144. 144.
    Begemann, G.: An X-Band balanced fin-line mixer. Symp. Dig., MTT, S, Ottawa (1978), S. 24–26.Google Scholar
  145. 145.
    Bates, R. N.; Colemann, M. D.: mm-Wave fin-line balanced mixers. 9th EuMC, Brighton (1979) Symp. Dig., S. 721–725.Google Scholar
  146. 146.
    Knoechel, R.; Schlegel, A.: Octave-band double-balanced integrated fin-line mixers at mm-wavelengths. EuMC 10 (1980), Warschau, Conference Proceedings, S. 722–726.Google Scholar
  147. 147.
    Menzel, W.; Callsen, H.: 94-GHz balanced fin-line mixers. Electronics letters 18 (1982) 5–6.CrossRefGoogle Scholar
  148. 148.
    Menzel, W.: A 140-GHz balanced mixer for fin-line integrated circuits. Proc. 13 EuMC Conf. (1983), 179–182.Google Scholar
  149. 149.
    Konishi, Y.; Uenakada, K.: The design of a bandpass filter with inductive strip-planar circuit mounted in waveguide. IEEE MTT, 22 (1974) 869–873.Google Scholar
  150. 150.
    Tajima, Y.; Sawayama, Y.: Design and analysis of a waveguide-sandwich microwave filter. IEEE MTT, 22 (1974) 839–841.Google Scholar
  151. 151.
    Saad, A. M. K.; Schünemann, K.: Design and performance of fin-line bandpass filters. 9th EuMC (1979) Conf. Proc., S. 379–401.Google Scholar
  152. 152.
    Arndt, F.; u. a.: Low-insertion-loss fin-line filters for millimeter-wave applications. 1 lth EuMC (1981) Conf. Proc., S. 309–314.Google Scholar
  153. 153.
    Shih, Y.; Itoh, T.; Bui, L. Q.: Computer-aided design of millimeter-wave E-plane filters. IEEE MTT, 31 (1983) 135–142.Google Scholar
  154. 154.
    Arndt, F.; u. a.: Theory and design of low-insertion loss fin-line filters IEEE MTT, 30 (1982) 155–163.CrossRefGoogle Scholar
  155. 155.
    Vahldieck, R.; u. a.: Optimized low insertion loss millimeter-wave fin-line and metal insert filters. Proc. IEEE 52 (1982) 513–527.Google Scholar
  156. 156.
    Klein, W.: Mehrtortheorie. Berlin: Akademie-Verlag 1976.zbMATHGoogle Scholar
  157. 157.
    Montgomery, C. G.; Dicke, R. H.; Purcell, E. M.: Principles of microwave circuits. New York: McGraw-Hill 1947, S. 146ff.Google Scholar
  158. 158.
    Oswald, J.: Sur la répartition de l’energie dans les réseaux linéares. Câble et Transmission 12 (1958) 303–324.Google Scholar
  159. 159.
    Schuon, E.; Wolf, H.: Die Darstellung von Mehrpolen durch die Streumatrix. NTZ 12 (1959) 361–366; 408–415.Google Scholar
  160. 160.
    Matthaei, G. L.; Young, L.: Jones, E. M. T.: Microwave filters, impedance-matching networks, and coupling structures. New York: McGraw-Hill 1964, S. 38; 42–45.Google Scholar
  161. 161.
    Brand, H.: Schaltungslehre linearer Mikrowellennetze. Stuttgart: Hirzel 1970, S. 118–124.Google Scholar
  162. 162.
    Schwartz, E.: Wechsel der Bezugsimpedanzen bei Streu-und Betriebsmatrizen. AEU 20 (1966) 357–364.Google Scholar
  163. 163.
    Brand, H.: Wellengrößen und Wellenmatrizen. AEU 15 (1961) 48–60.Google Scholar
  164. 164.
    Heaviside, O.: Electromagnetic theory. London: Ernest Benn 1893.Google Scholar
  165. 165.
    Collin, R. E.: Grundlagen der Mikrowellentechnik. Berlin: Verlag Technik 1973, S. 312–315.Google Scholar
  166. 166.
    Muraguchi, M.; Yukitake, T.; Naito, Y.: Optimum design of 3-dB branch-line couplers using micro-strip lines. IEEE Trans. Microwave Theory Tech. MTT, 31 (1983) 674–678.CrossRefGoogle Scholar
  167. 167.
    Wilkinson, E. J.: An n-way hybrid power divider. IRE Trans. Microwave Theory Tech MTT, 8 (1960) 116–118.CrossRefGoogle Scholar
  168. 168.
    Cohn, S. B.: A class of broadband three-port TEM-mode hybrids. IEEE Trans. Microwave Theory Tech. MTT, 16 (1968).Google Scholar
  169. 169.
    Nyström, G. L.: Synthesis of broad-band 3-dB hybrids based on the 2-way power divider. IEEE Trans. Microwave Theory Tech. MTT, 29 (1981) 189–194.CrossRefGoogle Scholar
  170. 170.
    Hoffmann, R. K.: Integrierte Mikrowellenschaltungen. Berlin, Heidelberg, New York: Springer 1983, S. 14.Google Scholar
  171. 171.
    Altmann, J. L.: Microwave circuits. New York: van Nostrand 1964. S. 149–161.Google Scholar
  172. 172.
    Wagner, K. W.: Induktionswirkungen von Wanderwellen in Nachbarleitungen. Elektrotech. Z. 35 (1914) 639–643; 677–680; 705–708.Google Scholar
  173. 173.
    Klein, W.: Die Theorie des Nebensprechens auf Leitungen. Berlin, Göttingen, Heidelberg: Springer 1955.CrossRefGoogle Scholar
  174. 174.
    Briechle, R.; Arndt, F.: Pulsübertragung längs zweier gekoppelter TEM-Wellenleitungen, Nachrichtentech. Z. 22 (1970) 115–120.Google Scholar
  175. 175.
    Grosskopf, J.: Das Reflektometer als Meßinstrument im Kurzwellenbereich. Fernmeldetech. Z. 5 (1952) 307–313.Google Scholar
  176. 176.
    von Baeyer, H. J.; Knechtli, R.: Über die Behandlung von Mehrleitersystemen mit TEM-Wellen bei hohen Frequenzen. Z. angew. Math. Phys. 3 (1952) 371–386.Google Scholar
  177. 177.
    Oliver, B. M.: Directional electromagnetic couplers. Proc. IRE 42 (1954) 1686–1692.CrossRefGoogle Scholar
  178. 178.
    Wolf, H.: Zur Theorie des Reflektometers. Arch. elektr. Übertrag. 8 (1954) 505–512.Google Scholar
  179. 179.
    Wolf, H.: Gekoppelte Hochfrequenzleitungen als Richtkoppler. Nachrichtentech. Z. 8 (1956) 375–382.Google Scholar
  180. 180.
    Kaden, W.: Die Übertragungsmatrizen gekoppelter Leitungen. AEÜ 16 (1962) 296–306.Google Scholar
  181. 181.
    Simonyi, K.: Theoretische Elektrotechnik. 7. Aufl. Berlin: Deutscher Verlag der Wissenchaften 1977.Google Scholar
  182. 182.
    Matthaei, G. L.; Young, L.; Jones, E. M. T.: Microwave filters, impedance-matching networks, and coupling structures. New York: McGraw-Hill 1964.Google Scholar
  183. 183.
    Cohn, S. B.: Shielded coupled-strip transmission line. IRE Trans. Microwave Theory Tech. MTT, 3 (1955) 19–38.Google Scholar
  184. 184.
    Jones, E. M. T.; Bolljahn, J. T.: Coupled-Strip transmission line filters and directional couplers. IRE Trans. Microwave Theory Tech. MTT, 4 (1956) 75–81.CrossRefGoogle Scholar
  185. 185.
    Bryant, T. G.; Weiss, J. A.: Parameters of microstrip transmission lines and of coupled pairs of microstrip lines. IEEE Trans. Microwave Theory Tech. MTT, 16 (1968) 1021–1027.CrossRefGoogle Scholar
  186. 186.
    Hoffmann, R. K.: Integrierte Mikrowellenschaltungen. Berlin,. Heidelberg, New York: Springer 1983.Google Scholar
  187. 187.
    Schmitt, H. J.; Sarges, J. H.: Wave propagation in microstrip. NTZ 24 (1971) 260–264.Google Scholar
  188. 188.
    Toussaint, H. N.; Hoffmann, R.: Integrierte Mikrowellenschaltungen: Stand und Tendenzen der Entwicklung. Frequenz 25 (1971) 100–110.CrossRefGoogle Scholar
  189. 189.
    Arndt, F.: Anwendung der Ähnlichkeitstransformation bei Microstrip-Leitungen. NTZ 26 (1973) 46–49.Google Scholar
  190. 190.
    Arndt, F.: Hochpaß-Richtkoppler für TEM-Wellen mit ortsabhängiger elektromagnetischer Kopplung. Arch. Elektr. Übertragung (AEÜ) 21 (1967) 139–146.Google Scholar
  191. 191.
    Arndt, F.: High-pass transmission-line directional coupler. IEEE Trans. Microwave Theory Tech. MTT, 16 (1968) 311–318.Google Scholar
  192. 192.
    Arndt, F.: Ortsabhängig elektromagnetisch gekoppelte TEM-Wellenleitungen als Hochpaß-Richtkoppler. Arch. Elektr. Übertragung (AEÜ) 23 (1969) 242–250.Google Scholar
  193. 193.
    Arndt, F.; Hoffmann, M.: Richtkoppler mit nichtminimalphasigem Koppelübertragungsfaktor. Arch. Elektr. Übertragung (AEÜ) 23 (1969) 575–576.Google Scholar
  194. 194.
    Arndt, F.: Tables for asymmetric Chebyshev high-pass TEM-mode directional couplers. IEEE Trans. Microwave Theory Tech. MTT, 18 (1970) 633–638.CrossRefGoogle Scholar
  195. 195.
    Arndt, F.; Hoffmann, M.: Äqui-ExtremwerT, Polynome und Synthese von 90°-Kopplern. Arch. f. Electronik. Übertragungstechn. (AEÜ) 26 (1972) 105–110.Google Scholar
  196. 196.
    Hindin, H. J.; Rosenzweig, A.: 3-dB couplers constructed from two tandem connected 8.34-dB asymmetric couplers. IEEE Trans. MTT, 16 (1968) 125–126.Google Scholar
  197. 197.
    Vaillancourt, R. M.: Analysis of the variable-ratio microwave power divider. IEEE Trans. Microwave Theory Tech. MTT, 6 (1958) 238–239.Google Scholar
  198. 198.
    Lange, J.: Interdigitated stripline quadrature hybrid. IEEE Trans. Microwave Theory Tech. MTT, 17 (1969) 1150–1151.CrossRefGoogle Scholar
  199. 199.
    deRonde, F. C.: A new class of mictrostrip directional couplers. IEEE GMTT Int. Mirowave Symp. Dig. (1970), S. 184–186.Google Scholar
  200. 200.
    Podell, A.: A high directivity microstrip coupler technique. Microwave Symposium Los Angeles, USA. Handbook 1970, S. 33–36.Google Scholar
  201. 201.
    Reed, J.; Wheeler, G. J.: A method of analysis of symmetrical four-port networks. IRE Trans. Microwave Theory Tech. MTT, 4 (1956) 246–252.CrossRefGoogle Scholar
  202. 202.
    Levy, R.: Directional couplers. In: Advances in Microwaves, Vol. 1 (Ed.: Young, L.) New York: Academic Press 1966.Google Scholar
  203. 203.
    Solbach, K.: Millimeterwellenschaltungen in der Technik der dielektrischen Bildleitungen. Nachrichten-Elektronik 10 (1979) 333–337.Google Scholar
  204. 204.
    Rembold, B.; u. a.: Integrierte mm-Wellenschaltungen in Finleitungstechnik (AEG-Telefunken, Bericht, Geschäftsbereich Hochfrequenztechnik ). 1982.Google Scholar
  205. 205.
    Weigel, E.; Wengel, J.: T, Koppler für die optische Datenübertragung. Wiss. Berichte AEG-Telefunken 53 (1980) 17–22.Google Scholar
  206. 206.
    Schmiedel, H.: Anwendung der Evolutionsoptimierung bei Mikrowellenschaltungen. Frequenz 35 (1981) 306–310.CrossRefGoogle Scholar
  207. 207.
    Cohn, S. B.: Parallel-coupled transmission-line-resonator filters. IRE Trans. Microwave Theory Tech. MTT, 6 (1958) 223–231.CrossRefGoogle Scholar
  208. 208.
    Arndt, F.; Saulich, H.: Microwave filters with nonperiodic transmission characteristic. Intern. J. Circuit Theory Applications 7 (1979) 87–96.CrossRefGoogle Scholar
  209. 209.
    Schiffman, B. M.: A new class of broad-band microwave 90-degree phase shifters. IRE Trans. Microwave Theory Tech. MTT, 6 (1958) 232–237.CrossRefGoogle Scholar
  210. 210.
    Richards, P. I.: Resistor transmission-line circuits. Proc. IRE 36 (1948) 217–220.CrossRefGoogle Scholar
  211. 211.
    Burger, D.; Gleissner, E.: Zum Entwurf von Filtern aus Leitungselementen gleicher Länge AEU 26 (1972) 31–44.Google Scholar
  212. 212.
    Pfitzenmaier, G.: Taschenbuch Tiefpässe. Berlin, München: Siemens AG 1971.Google Scholar
  213. 213.
    Schiffmann, B. M.; Matthaei, G. L.: Exact design of band-stop microwave filters. IEEE Trans. MTT, 12 (1964) 6–15.Google Scholar
  214. 214.
    Kuroda, K.: Derivation methods of distributed constant filters from lumped constant filters. Joint Meeting of Konsoi Branch of Institute of Elec. Commun., of Electronics and of Ilium. Engrs. of Japan, Tokio, Oct. 1952.Google Scholar
  215. 215.
    Wenzel, R. J.: Exact design of TEM microwave networks using quarter-wave lines. IEEE Trans. MTT, 12 (1964) 94–111.Google Scholar
  216. 216.
    Cohn, S. B.: Parallel-coupled transmission-line-resonator filters. IRE Trans. MTT, 6 (1958) 223–231.CrossRefGoogle Scholar
  217. 217.
    Matthaei, G. L.; Young, L.; Jones, E. M. T.: Microwave filters, impedance matching networks and coupling structures. New York: McGraw-Hill 1964.Google Scholar
  218. 218.
    Cohn, S. B.: Shielded coupled-strip transmission line. IRE Trans. MTT, 3 (1955) 29–38.CrossRefGoogle Scholar
  219. 219.
    Akhtarzad, S.; u. a.: The design of coupled microstrip lines. IEEE Trans. MTT, 23 (1975) 486–492.Google Scholar
  220. 220.
    Getsinger, W. J.: Coupled rectangular bars between parallel plates. IRE Trans. MTT, 10 (1962) 65–72.CrossRefGoogle Scholar
  221. 221.
    Cristal, E. G.: Coupled circular cylindrical rods between parallel ground planes. IEEE Trans. MTT, 12 (1964) 428–439.Google Scholar
  222. 222.
    Dishal, M.: A simple design procedure for small percentage bandwidth round-rod interdigital filters. IEEE Trans. MTT, 13 (1965) 696–698.Google Scholar
  223. 223.
    Pregla, R.: Ein Syntheseverfahren für Kammfilter für kleine and große Bandbreite. AEU 23 (1969) 13–19.Google Scholar
  224. 224.
    Cristal, E. G.: Capacity coupling shortens comb-line filters. Microwaves, Dec. 1967, 44–50.Google Scholar
  225. 225.
    Farnell, G. W.: Types and properties of surface waves. In: Acoustic surface waves (Ed.: Oliner, A. A.). Berlin, Heidelberg, New York: Springer 1978, S. 13–60.Google Scholar
  226. 226.
    Tancrell, R. H.: Principles of surface wave filter design. In: Surface wave filters: Design, construction and use. (Ed.: Matthews, H.) New York: Wiley 1977, S. 109–164.Google Scholar
  227. 227.
    Ristic, V. M.: Principles of acoustic devices. New York: Wiley 1983, S. 238–276.Google Scholar
  228. 228.
    Smith, W. R.; u. a.: Analysis of interdigital surface wave transducers by use of an equivalent circuit model. IEEE Trans. Microwave Theory Tech. MTT, 17 (1969) 856–873.CrossRefGoogle Scholar
  229. 229.
    Szabo, T. L.; Laker, K. R.; Cohen, E.: Interdigital transducer models: Their impact on filter synthesis. IEEE Trans. Sonics Ultrason. SU-26 (1979) 321–333.Google Scholar
  230. 230.
    Dunnrowicz, D.; Sandy, F.; Parker, T.: Reflection of surface waves from periodic discontinuities. 1976 IEEE Ultrasonics Symp. Proc., S. 386–390.Google Scholar
  231. 231.
    Ruppel, C.; u. a.:Optimum design of SAW-filters by linear programming. 1983 IEEE Ultrasonics Symp. Proc., S. 23–26.Google Scholar
  232. 232.
    Mader, W. R.; Ruppel, C.; Ehrmann-Falkenau, E.: Universal method for compensation of SAW diffraction and other second order effects. 1982 IEEE Ultrasonics Symp. Proc., S. 23–28.Google Scholar
  233. 233.
    Gerard, H. M.: Surface wave interdigital chirp filters. In: Surface wave filters: Design, construction and use. (Ed.: Matthews, H.) New York: Wiley 1977, S. 347–388.Google Scholar
  234. 234.
    Ruppel, C. C. W.; Dill, R.; Fischeauer, A.; Fischerauer, G.; Gawlik, W.; Machui, J.; Müller, F.; Reindl, L.; Ruile, W.; Scholl, G.; Schropp, I.; Wagner, K. C.: SAW Devices for Consumer Communication Applications IEEE Trans. Ultrasonics, Ferroel. and Frequ. Control, UFFC. 40 (1993) 438–452.CrossRefGoogle Scholar
  235. 235.
    Ash, E. A.: Fundamentals of signal processing devices. In: Acoustic surface waves. (Ed.: Olinér, A. A.). Berlin, Heidelberg, New York: Springer 1978, S. 97–185.Google Scholar
  236. 236.
    Stocker, H.: Akustische Oberflächenwellen-Bauelemente. Eletronik 18/7. 9. 1984, 87–93.Google Scholar
  237. 237.
    Morgan, D. P.: Surface wave devices for signal processing. Amsterdam: Elsevier 1985.Google Scholar
  238. 238.
    Datta, S.: Surface acoustic wave devices. New York: Prentice Hall 1986.Google Scholar
  239. 239.
    Matthews, W.: Surface wave filters: design, construction and use. New York: Wiley 1977.Google Scholar
  240. 240.
    Oliner, A. A.: Acoustic surface waves. Berlin, Heidelberg, New York: Springer 1978.CrossRefGoogle Scholar
  241. 241.
    Knetsch, H. D.: Beitrag zur Theorie sprunghafter Querschnittsveränderungen von Hohlleitern. Arch. El. Übertragungstechn. (AEC) 22 (1968) 591–600.Google Scholar
  242. 242.
    Bornemann, J.; Arndt, F.: Modals-S-matrix design of optimum stepped ridged and finned waveguide transformers. IEEE Trans. Microwave Theory Tech. MTT, 35 (1987) 561–567.CrossRefGoogle Scholar
  243. 243.
    Menzel, W.: Integrated fin-line components for communication, radar, and radiometer applications. In: Infrared and Millimeter Waves, Vol. 13 Academic Press (1985) 77–121.Google Scholar
  244. 244.
    Menzel, W.; Callsen, H.: 140 GHz fin-line components. IEEE MTT, 33 (1985) 53–56.Google Scholar
  245. 245.
    Piotrowski, J. K.: Efficient analysis of fin-line with finite metallization thickness. Proc. IEEE MTT, S, Baltimore (1986) 213–216.Google Scholar
  246. 246.
    Mansour, R. R.; Tong, R. S. K.; MacPhie, R. H.: Simplified description of the field distribution in finlines and ridged waveguides and its application to the analysis of E-plane discontinuities. Proc. IEEE MTT, S, New York (1988) 713–716.Google Scholar
  247. 247.
    Vahldieck, R.: Accurate hybrid-mode analysis of various fin-line configurations including multilayered dielectrics, finite metallization thickness, and substrate holding grooves. IEEE Transactions on Microwave Theory and Techniques-32 (1984) 1454–1460.Google Scholar
  248. 248.
    Bornemann, J.; Arndt, F.: Calculating the characteristic impedance of fin-lines by transverse resonance method. IEEE Transactions on Microwave Theory and Techniques. 34 (1986) 85–92.CrossRefGoogle Scholar
  249. 249.
    Olley, C. A.; Rozzi, T.: Characterisation of unilateral fin-line mode spectrum including losses. Proc. 16. EuMC, Dublin (1986) 511–516.Google Scholar
  250. 250.
    Schmidt, L. P.; Callsen, H.: Fin-line PIN-diode switches for millimetre-Waves with extremely high isolation and short switching time MIOP (1988), Wiesbaden, 9A-4.Google Scholar
  251. 251.
    Callsen, H.; Kadisch, G.; Adelsbeck, B.: A novel E-plane 180° PSK/ASK modulator for Ka-band. MIOP (1988), Wiesbaden, 9A-5.Google Scholar
  252. 252.
    Menzel, W.: Compact 94 GHz dual-polarisation radar receiver realized using different integration techniques. MSN, Febr. 84, S. 78–86.Google Scholar
  253. 253.
    Vahldieck, R.; Bornemann, J.; Arndt, F.; Grauerholz, D.: W-Band low-insertion loss E-plane filter. IEEE Trans. MTT, 32 (1984) 133–135.Google Scholar
  254. 254.
    Shih, Y.-C.: Design of waveguide E-plane filters with all-metal insert. IEEE Trans. MTT, 32 (1984) 695–704.Google Scholar
  255. 255.
    Bui, L. Q.; Ball, D.; Itoh, T.: Broadband millimeter-wave E-plane bandpass filters. Proc. IEEE MTT, S, San Francisco (1984) 236–237.Google Scholar
  256. 256.
    Vahldieck, R.; Hoefer, W. J. R.: Fin-line and metal insert filters with improved passband separation and increased stopband attenation. IEEE Trans. MTT, 33 (1985) 1333–1339.Google Scholar
  257. 257.
    Nguyen, C.; Chang, K.: Design and performance of a W-band broadband fin-line diplexer with over 20 GHz bandwidth. Proc. IEEE MTT, S, St. Louis (1985) 349–352.Google Scholar
  258. 258.
    Vahldieck, R.; Varailhon de la Filolie, B.: Computer-Aided design of parallel-connected millimeter-wave diplexers/multiplexers. Proc. IEEE MTT, S, New York (1988) 435–438.Google Scholar
  259. 259.
    DIN IEC 49 (CO) 117: Leitfaden für die Anwendung von Quarzfiltern. Berlin 30 und Köln 1: Beuth Verlag 1987.Google Scholar
  260. 260.
    Orchard, H. J.: Sensivity formulas for terminated lossless Two-Ports. IEEE Transactions on Circuits and Systems CAS-32 (1985) 459–466.Google Scholar
  261. 261.
    Saal, R.: Handbuch zum Filterentwurf. Heidelberg: Hüthig 1988.Google Scholar
  262. 262.
    Bosse, G.: Einführung in die Synthese elektrischer Siebchaltungen mit vorgeschriebenen Eigenschaften. Stuttgart: Hirzel 1963.Google Scholar
  263. 263.
    Klein, W.: Äquivalente Schaltungen. In: Handbuch der Informationstechnik und Elektronik, Band 2. Hrsg: A. Lacroix, Heidelberg: Hüthig 1990.Google Scholar
  264. 264.
    Waren, A. D.: Approximation problem for resonator ladder filters. IEEE Transactions on Circuit Theory CT, 12 (1965) 215–222.Google Scholar
  265. 265.
    Poschenrieder, W.: Steile Quarzfilter großer Bandbreite in Abzweigschaltung. NTZ 12 (1956) 561–565.Google Scholar
  266. 266.
    Haas, W.: Die Verwendung von Quarzen in Netzwerken, die nach der Betriebsparametertheorie berechnet werden. Frequenz 16 (1962), 161–167.CrossRefGoogle Scholar
  267. 267.
    Dishal, M.: Modern network theory design of single-sideband crystal ladder filters. Proc. of the IEEE 53 (1965) 1205–1216.CrossRefGoogle Scholar
  268. 268.
    Zverev, A. I.: Handbook of Filter Synthesis. New York, London, Sydney: Wiley 1967.Google Scholar
  269. 269.
    Matthaei, G. L.: Microwave filters, impedance-matching networks, and coupling structures. New York, San Francisco, Toronto, London: McGraw-Hill 1964.Google Scholar
  270. 270.
    Lorenz, R. W.: Systematik mehrkreisiger Kopplungsbandfilter-Schaltungen. NTZ 24 (1971) 81–88.Google Scholar
  271. 271.
    Herzog, W.: Siebschaltungen mit Schwingkristallen. Braunschweig: Vieweg 1962.Google Scholar
  272. 272.
    Klein, W.: Vierpoltheorie. Mannheim, Wien, Zürich: Bibliografisches Institut 1972.Google Scholar
  273. 273.
    Yee, H. K. H.: Finite-pole frequencies in monolithic crystal filters. Proceedings of the IEEE 59 (1971) 88–89.CrossRefGoogle Scholar
  274. 274.
    Smythe, R. C.: Some recent advances in integrated crystal filters. Proceedings of the IEEE 67 (1979) 119–129.CrossRefGoogle Scholar
  275. 275.
    Poschenrieder, W.: Die Wellenparametertheorie als einfaches Hilfsmittel zur Realisierung von Quarzbandfiltern in Abzweigschaltung. NTZ 3 (1959) 132–137.Google Scholar
  276. 276.
    Sheahan. D. F.: Crystal and mechanical filters. IEEE Transactions on circuits and systems CAS-22 (1975) 69–89.Google Scholar
  277. 278.
    Itoh, T.: Overview of quasi-planar transmission lines. IEEE-MTT 1989, S. 275–280.Google Scholar
  278. 279.
    Eswarappa; Costache, G. I.; Hoefer, W. J. R.: Fin lines in rectangular and circular waveguide housings including substrate mounting and bending effects — finite element analysis. IEEE-MTT (37) 1989, S. 299–306.Google Scholar
  279. 280.
    Dittloff, J.; Arndt, F.: Rigorous field theory design of millimeter-wave E-Plane integrated circuit multiplexers. IEEE-MTT (37) 1989, S. 340–350.Google Scholar
  280. 281.
    Callsen, H.; Meinel, H. H.; Hoefer, W. J. R.: p-i-n-diode control devices in E-plane technique. IEEE-MTT (37) 1989, S. 307–316.Google Scholar
  281. 282.
    Vahldieck, R.: Quasi-planar filters for millimeter-wave applications. IEEE-MTT (37) 1989, S. 324–334.Google Scholar
  282. 283.
    Feldmann, M.: Surface acoustic waves for signal processing. Boston, London: Artech House 1989.Google Scholar
  283. 284.
    Campbell, C.: Surface acoustic wave devices and their signal processing applications. Boston: Academic Press 1989.Google Scholar
  284. 285.
    Dill, R.; Anemogiannis, K.; Kappacher C.; Riha G.: SAW Filters for Mobile Communication Systems. Proceedings MIOP 1993, Sindelfingen, S. 171–175.Google Scholar
  285. 286.
    Scholl, G.; Dill, R.; Ruile, W.; Ruppel, C.: New Resonator Filter with High Sidelobe Suppression. Proceedings IEEE UFFC-Symposium, Tucson 1992, S. 117–121.Google Scholar
  286. 287.
    Kappacher, C.; Männer, O.; Ruile, W.; Dill, R.: Design and Analysis of Single Phase Unidirectional Transducers. Proceedings IEEE UFFC-Symposium, Orlando 1991, 1–4.Google Scholar
  287. 288.
    Magnin, P.; Borcard, B.: Calcul et Réalisation des Filtres à Quartz en Echelle. Radio REF Réseau des Émetteurs Français 62 (1990) 4, S. 39–47.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  • F. Arndt
  • R. Briechle
  • R. Dill
  • T. Motz
  • B. Rembold
  • H. Stocker
  • H. Vollhardt
  • O. Zinke

There are no affiliations available

Personalised recommendations