A Survey of Algorithms for 3-Dimensional Electromagnetic Problems in Hyperthermia

  • P. Wust
  • J. Nadobny
  • R. Felix
  • M. Dohlus
Conference paper

Summary

Different methods for solution of Maxwell’s equations in an arbitrary heterogeneous 3­dimensional medium are under study. The algorithms are mainly classified Into inte­gral equation (IE) methods, which yields a Surface-IE (boundary element method), Volume-IE or Volume-surface-IE (VSIE) and differential equation (DE) methods as Finite-element (FE), Finite-difference-time-domain (FDTD) and Finite-integration­theory (FIT) method. The general advantage of IE-methods is the obtainable accuracy at electrical interfaces, which might be important to understand, predict and circum­vent phenomena in clinical hyperthermia at tissue boundaries. On the other hand, DE-methods are with present codes more efficient regarding calculation time, if only know­ledge of the global behaviour of power deposition is required in a clinical situation. The present efficiency as well as potentialities of existing codes is outlined in the following paper.

Keywords

Microwave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wust, P., Nadobny, J., Fähling,H., Riess, H., Koch, K., John, W., Felix, R. EinfluBfaktoren und Störeffekte bei der Steuerung von Leistungsverteilungen mit dem Hyperthermie-Ringsystem BSD-2000 I. Klinische Observablen und Phantommessungen Strahlenther. Onkol. 166 (1990) 822 - 830Google Scholar
  2. 2.
    Wust, P., Nadobny, J., Felix, R., Deuflhard, P., Louis, A., John, W. Strategies for optimized application of annular-phased-array systems in clinical hyperthermia. Int. J. Hyperthermia 7 (1991) 157 - 173CrossRefGoogle Scholar
  3. 3.
    Paulsen, K.D. Calculation of power deposition patterns in hyperthermia In Thermal Dosimetry and Treatment Planning M. Gautherie (Ed.) Springer-Verlag 1990, p. 57 - 118Google Scholar
  4. 4.
    Borup, D.T., Sullivan, D.M., Gandhi, O. P. Comparison of the FFT conjugate gradient method and the finite-difference time-domain method for the 2-D absorption problem IFFF Trans. Microwave Theory Tech., MTT-35 (1987) 383 - 395Google Scholar
  5. 5.
    Wust,P., Nadobny,J., Dohlus,M., John,W., Felix,R. 3D-computation of E-fields by the Volume-surface integral equation (VSIE) method in comparison to the Finite-integration theory (Fil’) method submitted to IEEE Trans.Biomed.Eng.Google Scholar
  6. 6.
    Paulsen, K.D., Lynch, D.R., Strohbehn, J.W. Three-dimensional finite boundary and hybrid element solutions of the Maxwell equations for lossy dielectric media IEEE Trans. Microwave Theory Tech., MTT-36 (1988) 682 - 693Google Scholar
  7. 7.
    Sullivan, D.M. Three-dimensional computer simulation in deep regional hyperthermia using the FDTD method. IEEE Trans. Microwave Theor. Tech., MTT-38 (1990)Google Scholar
  8. 8.
    Sullivan, D.M. Mathematical methods for treatment planning in deep regional hyperthermia submitted, and private communicationGoogle Scholar
  9. 9.
    Weiland, Th. On the numerical solution of Maxwell’s equations and applications in the field of accelerator physics. Particle Accelerators, Vol. 15 (1984) 245 - 292Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1991

Authors and Affiliations

  • P. Wust
    • 1
    • 2
  • J. Nadobny
    • 1
    • 2
  • R. Felix
    • 1
    • 2
  • M. Dohlus
    • 1
    • 2
  1. 1.Klinikum Rudolf VirchowFreie Universität Berlin, Strahlenklinik und PoliklinikBerlin 65Germany
  2. 2.This work is supported by the Deutsche Krebshilfe e.V.BonnGermany

Personalised recommendations