Advertisement

Pattern Mathematics

  • Teuvo Kohonen
Part of the Springer Series in Information Sciences book series (SSINF, volume 8)

Abstract

When dealing with spatially or temporally related samples of signal values that represent “information”, one needs a mathematical framework for the description of their quantitative interrelations. This is often provided by the vector formalism. The operations in vector spaces, on the other hand, can conveniently be manipulated by matrix algebra. These topics form the main contents of this section.

Keywords

Mathematical Notation Orthogonal Projection Matrix Product Representation Vector Positive Semidefinite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 2.1
    A. Albert: Regression and the Moore-Penrose Pseudoinverse ( Academic, New York 1972 )MATHGoogle Scholar
  2. 2.2
    J.E. Mayer, M. Goeppert-Mayer: Statistical Mechanics ( Wiley, New York 1940 )MATHGoogle Scholar
  3. 2.3
    T. Kohonen, E. Reuhkala, K. Mäkisara, L. Vainio: Biol. Cyb. 22, 159 (1976)CrossRefGoogle Scholar
  4. 2.4
    R. Penrose: Proc. Cambridge Philos. Soc. 51, 406 (1955)MathSciNetMATHGoogle Scholar
  5. 2.5
    R. Penrose: Proc. Cambridge Philos. Soc. 52, 17 (1956)MathSciNetMATHGoogle Scholar
  6. 2.6
    A. Ben-Israel, T.N.E. Greville: Generalized Inverses: Theory and Applica-tions ( Wiley, New York 1974 )Google Scholar
  7. 2.7
    T.L. Boullion, P.L. Odell: Generalized Inverse Matrices ( Wiley, New York 1971 )MATHGoogle Scholar
  8. 2.8
    C.R. Rao, S.K. Mitra: Generalized Inverse of Matrices and Its Applications ( Wiley, New York 1971 )MATHGoogle Scholar
  9. 2.9
    T.N.E. Greville: SIAM Rev. 2, 15 (1960)MathSciNetADSMATHCrossRefGoogle Scholar
  10. 2.10
    R.E. Cline: SIAM J. Appl. Math. 12, 588 (1964)MathSciNetMATHCrossRefGoogle Scholar
  11. 2.11
    T. Kohonen: IEEE Trans. C-23, 444 (1974)Google Scholar
  12. 2.12
    D.J. Rogers, T.T. Tanimoto: Science 132, (1960)Google Scholar
  13. 2.13
    L. Ornstein: J. M. Sinai Hosp. 32, 437 (1965)Google Scholar
  14. 2.14
    K. Sparck-Jones: Automatic Keyword Classification and Information Retri-eval ( Butterworth, London 1971 )Google Scholar
  15. 2.15
    J. Minker, E. Pentola, G.A. Wilson: Tech. Report 201, Univ. of Maryland, Computer Sci. Center (1972)Google Scholar
  16. 2.16
    J.S. Liénard, M. Mlouka, J.J. Mariani, J. Sapaly: Real-Time Segmentation of Speech, in Preprints of the Speech Communication Seminar, Vol.3 (Almgvist 000000 Wiksell, Uppsala 1975 ) p. 183Google Scholar
  17. 2.17
    T. Tanimoto: An Elementary Mathematical Theory of Classification and Prediction (Int'l. Rpt. IBM Corp. 1958 )Google Scholar
  18. 2.18
    J. Lukasiewicz: Ruch Filos. 5, 169 (1920)Google Scholar
  19. 2.19
    E.L. Post: Am. J. Math. 43, 163 (1921)MathSciNetMATHCrossRefGoogle Scholar
  20. 2.20
    L.A. Zadeh: IEEE Trans. SMC-3, 28 (1973)Google Scholar
  21. 2.21
    R.W. Hamming: Bell Syst. Tech. J. 29, 147 (1950)MathSciNetGoogle Scholar
  22. 2.22
    V.M. Velichko, N.G. Zagoruyko: Int'l. J. Man Mach. Stud. 2, 223 (1970)CrossRefGoogle Scholar
  23. 2.23
    V.I. Levenshtein: Sov. Phys. Dokl. 10, 707 (1966)MathSciNetADSGoogle Scholar
  24. 2.24
    T. Okuda, E. Tanaka, T. Kasai: IEEE Trans. C-25, 172 (1976)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1988

Authors and Affiliations

  • Teuvo Kohonen
    • 1
  1. 1.Laboratory of Computer and Information SciencesHelsinki University of TechnologyEspoo 15Finland

Personalised recommendations