Advertisement

Dirichlet Series for the Group GL(N)

  • Herve Jacquet
Part of the Tata Institute of Fundamental Research Studies in Mathematics book series (TATA STUDIES)

Abstract

Suppose ϕ is a modular cusp form with Fourier expansion:
$$ \varphi \left( z \right) = \sum\limits_{n > 1} {{a_n}} \exp \left( {2i\pi nz} \right). $$
(1.1)

Keywords

Analytic Continuation Fourier Expansion Cusp Form Dirichlet Series Automorphic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C—S] Casselman W. and J. Shalika, Unramified Whittaker functions, to appear.Google Scholar
  2. [G-K]
    Gelfand J. M. and D. A. Kazdan, Representations of GI (n, K) where K is a local field, in Lie groups and their representations, John Wiley and Sons (1975), 95–118.Google Scholar
  3. [J-S1]
    Jacquet H. and J. Shalika, Hecke theory for GL(3), Comp. Math., 29: 1 (1974), 75–87.MathSciNetMATHGoogle Scholar
  4. [J-S2]
    Jacquet H. and J. Shalika, Comparaison des representations automorphes du groupe line aire, C.R. Acad. Sc. Paris, 284 (1977), 741–744.MathSciNetMATHGoogle Scholar
  5. [J-S-PI]
    Jacquet H., J. Shalika, and J. J. Piatetski-Shaprio, Automorphic forms on GL(3), I and II Annals of Math, 109 (1979).Google Scholar
  6. J-S-P2] Jacquet H., J. Shalika, and J. J. Piatetski Shapiro, Facteurs L et e du groupe lineaire, to appear in C.R. Acad. Sci. (1979), Paris.Google Scholar
  7. J—S—P3] JACQUET H., J. Shalika, and J. J. Piatetski-Shapiro, Constructions of cusp forms on GL(n), Univ. of Maryland, Lectures Notes in Math. 16 (1975).Google Scholar
  8. PI] Piatetski-Shapiro J.J., Euler subgroups,in Lie groups and their representations, John Wiley and Sons (1975), 597–620.Google Scholar
  9. P2] Piatetski-Shapiro J.J., Zeta functions on GL(n), Mimeographed notes, Univ. of Maryland.Google Scholar
  10. Sha], Shalika J., The multiplicity one theorem for GL(n), Annals of Math. 100 (1974), 171–193.CrossRefGoogle Scholar
  11. Shi], Shintani T., On an explicit formula for class-1 “Whittaker functions” on GL over p-adic fields, Proc. Japan. Acad. 52 (1976), 180–182.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Herve Jacquet

There are no affiliations available

Personalised recommendations