Period Integrals of Cohomology Classes Which are Represented by Eisenstein Series

  • G. Harder
Part of the Tata Institute of Fundamental Research Studies in Mathematics book series (TATA STUDIES)


Our starting point is a very general question. Let Γ be an arithmetic subgroup of a reductive Lie group G. Then the group T acts on the symmetric space X = G/K where K ⊂ G is a maximal compact subgroup.


Conjugacy Class Modular Form Boundary Component Galois Group Cohomology Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BOREL, A. Introduction aux groupes arithmetiques, Herman, Paris, (1969)Google Scholar
  2. [2]
    BOREL, A. Cohomologie de SL n et valeurs des fonctions zeta aux points entiers. (preprint).Google Scholar
  3. [3]
    BOREL, A. and J.P. SERRE, Corners and arithmetic groups, Comm. Math. Helv., 48, (1973), 436–491MathSciNetMATHCrossRefGoogle Scholar
  4. [4]
    DAMERELL, L-functions of elliptic curves with complex multiplication, I, II, Acta Arithmetica, 17(1970), 287–301, 19 (1971), 311–317Google Scholar
  5. [5]
    HARDER, G. A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann. Scient. Ec. Norm. Sup. t. 4, (1971), p. 409–455MathSciNetMATHGoogle Scholar
  6. [6]
    HARDER, G. Chevalley groups over function fields and automorphic forms, Ann. of Math., vol 100, No 2, (1974), p. 249–306MathSciNetMATHCrossRefGoogle Scholar
  7. [7]
    HARDER, G. Cohomology of SL2(0), Lie groups and their representations, Proc. of the Summer School on Group Repres., I.M. Gelfand ed., A Hilger, London 1975, p. 139–150Google Scholar
  8. [8]
    HARDER, G. On the cohomology of discrete arithmetically defined groups, Proc. of the Int. Colloquium on Discrete Subgroups of Liegroups and Applications to Moduli, Bombay, 1973, Oxford University Press, 1975, p. 129–160Google Scholar
  9. [9]
    HARISH-CHANDRA, Automorphic forms on semisimple Lie groups,Springer lecture Notes, 62, 1968Google Scholar
  10. [10]
    HECKE, E. Gesammelte Werke, Vandenhoeck u. Ruprecht, Göttingen, (1970)Google Scholar
  11. [11]
    JACQUET, H. Fonctions de Whittaker associées aus groupes de Chevalley, Bull. Soc. Math. France 95, p. 243–309Google Scholar
  12. [12]
    LANG, S. Algebraic Number Theory. Addison Wesley Publ. company, (1970)Google Scholar
  13. [13]
    LANGLANDS, R.P. On the functional equation satisfied by Eisenstein series, Springer lecture Notes, 544, (1976)Google Scholar
  14. [14]
    LANGLANDS, R.P. Euler Products, James K. Whittemore Lectures, Yale University, (1967)Google Scholar
  15. [15]
    MENDOZA, E. Dissertation (in Preparation)Google Scholar
  16. [16]
    MILLSON, J.J. On the first Betti number of a constant negatively curved manifold. Ann. of Math., 104, (1976), p. 235–247MathSciNetMATHCrossRefGoogle Scholar
  17. [17]
    RAZAR, M. Values of Dirichlet series at integers in the critical strip. Springer lecture Notes, 627, (1977), p. 1–9Google Scholar
  18. [18]
    SCHWERMER, J. Sur la cohomologie des sousgroupes de congruence de SL3 (Z), C.R. Acad. Sc. Paris, 283, (1976), p. 817–820MathSciNetMATHGoogle Scholar
  19. [19]
    SCHWERMER, J. Eisensteinreihen und die Kohomologie von Kongruenzuntergruppen von SL„ (Z), Dissertation, Bonner Math. Schriften, Nr. 99, Bonn (1977)Google Scholar
  20. [20]
    SERRE, J.P. Le probleme des groupes de congruence pour SL2, Ann. of Math., 92, (1970), 489–527.MathSciNetMATHCrossRefGoogle Scholar
  21. [21]
    SERRE, J.P. Cohomologie des Groupes Discrets, Prospects in Mathematics, Ann. of Math. Studies, Princeton University Press, 70, (1971), p. 77–16Google Scholar
  22. [22]
    SHIMURA, G. On the periods of modular forms. Math. Ann., 229, p. 211–221, 1977MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    SHIMURA, G. On special values of zeta functions associated with cusp forms, Comm. Pure and Appl. Math. 29. 783–804 (1976)MathSciNetMATHCrossRefGoogle Scholar
  24. [24]
    SHIMURA, G. On some arithmetic properties of modular forms of one and several variables, Ann. of Math. 102, (1975), p. 491–515.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    SPRINGER, T. Cusp forms for finite groups, Seminar on Algebraic Groups and related finite Groups, IAS, Springer Lecture Notes, 131, 1970 p. 97–120Google Scholar
  26. [26]
    SWINNERTON-DYER On the conjectures of Birch, Swinnerton-Dyer, and Tate Proceedings of a Conference on Local Fields, Summer School, Driebergen, p. 132–157, Springer 1967.Google Scholar
  27. [27]
    WEIL, A. Adeles and algebraic groups, Mimeographed Notes, Princeton 1960Google Scholar
  28. [28]
    WHITTAKER, E.T. and G.N. WATSON, A course of modern analysis, Cambridge University Press, 1963.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • G. Harder

There are no affiliations available

Personalised recommendations