Number Theoretic Transforms

  • Henri J. Nussbaumer
Part of the Springer Series in Information Sciences book series (SSINF, volume 2)

Abstract

Most of the fast convolution techniques discussed so far are essentially algebraic methods which can be implemented with any type of arithmetic. In this chapter, we shall show that the computation of convolutions can be greatly simplified when special arithmetic is used. In this case, it is possible to define number theoretic transforms (NTT) which have a structure similar to the DFT, but with complex exponential roots of unity replaced by integer roots and all operations defined modulo an integer. These transforms have the circular convolution property and can, in some instances, be computed using only additions and multiplications by a power of two. Hence, significant computational savings can be realized if NTTs are executed in computer structures which efficiently implement modular arithmetic.

Keywords

Convolution Fermat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 8.1
    I. J. Good: The relationship between two fast Fourier transforms. IEEE Trans. C-20, 310–317 (1971)Google Scholar
  2. 8.2
    J. M. Pollard: The fast Fourier transform in a finite field. Math. Comput. 25, 365–374 (1971)MathSciNetMATHCrossRefGoogle Scholar
  3. 8.3
    P. J. Nicholson: Algebraic theory of finite Fourier transforms. J. Comput. Syst. Sci. 5, 524–547 (1971)MathSciNetMATHCrossRefGoogle Scholar
  4. 8.4
    P. J. Erdelsky: “Exact convolutions by number-theoretic transforms”; Rept. No. ADA013 395, San Diego, Calif. Naval Undersea Center (1975)Google Scholar
  5. 8.5
    C. M. Rader: Discrete convolutions via Mersenne transforms. IEEE Trans. C-21, 1269–1273 (1972)MathSciNetGoogle Scholar
  6. 8.6
    R. C. Agarwal, C. S. Burrus: Fast convolution using Fermat number transforms with applications to digital filtering. IEEE Trans. ASSP-22, 87–97 (1974)MathSciNetGoogle Scholar
  7. 8.7
    R. C. Agarwal, C. S. Burrus: Number theoretic transforms to implement fast digital convolution. Proc. IEEE 63, 550–560 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.8
    L. M. Leibowitz: A simplified binary arithmetic for the Fermat number transform. IEEE Trans. ASSP-24, 356–359 (1976)MathSciNetGoogle Scholar
  9. 8.9
    J. H. McClellan: Hardware realization of a Fermat number transform. IEEE Trans. ASSP-24, 216–225 (1976)Google Scholar
  10. 8.10
    H. J. Nussbaumer: Linear filtering technique for computing Mersenne and Fermat number transforms. IBM J. Res. Dev. 21, 334–339 (1977)MATHCrossRefGoogle Scholar
  11. 8.11
    H. J. Nussbaumer: Complex convolutions via Fermat number transforms. IBM J. Res. Dev. 20, 282–284 (1976)MathSciNetMATHCrossRefGoogle Scholar
  12. 8.12
    E. Vegh, L. M. Leibowitz: Fast complex convolutions in finite rings. IEEE Trans. ASSP-24, 343–344 (1976)MathSciNetGoogle Scholar
  13. 8.13
    L. B. Jackson: On the interaction of round-off noise and dynamic range in digital filters. Bell Syst. Tech. J. 49, 159–184 (1970)MATHGoogle Scholar
  14. 8.14
    P. R. Chevillat, F. H. Closs: “Signal processing with number theoretic transforms and limited word lengths”, in IEEE 1978 Intern. Acoustics, Speech and Signal Processing Conf. Proc.. pp. 619–623Google Scholar
  15. 8.15
    H. J. Nussbaumer: Digital filtering using complex Mersenne transforms. IBM J. Res. Dev. 20, 498–504 (1976)MathSciNetMATHCrossRefGoogle Scholar
  16. 8.16
    H. J. Nussbaumer: Digital filtering using pseudo Fermat number transforms. IEEE Trans. ASSP-26, 79–83 (1977)Google Scholar
  17. 8.17
    E. Dubois, A. N. Venetsanopoulos: “Number theoretic transforms with modulus 2q + 1”, in IEEE 1978 Intern. Acoustics, Speech and Signal Processing Conf. Proc., pp. 624–627Google Scholar
  18. 8.18
    H. J. Nussbaumer: Overflow detection in the computation of convolutions by some number theoretic transforms. IEEE Trans. ASSP-26, 108–109 (1978)Google Scholar
  19. 8.19
    I. S. Reed, T. K. Truong: The use of finite fields to compute convolutions. IEEE Trans. IT-21, 208–213 (1975)MathSciNetGoogle Scholar
  20. 8.20
    I. S. Reed, T. K. Truong: Complex integer convolutions over a direct sum of Galois fields. IEEE Trans. IT-21, 657–661 (1975)MathSciNetGoogle Scholar
  21. 8.21
    H. J. Nussbaumer: Relative evaluation of various number theoretic transforms for digital filtering applications. IEEE Trans. ASSP-26, 88–93 (1978)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1981

Authors and Affiliations

  • Henri J. Nussbaumer
    • 1
  1. 1.IBM Centre d’Etudes et RecherchesLa Gaude, Alpes-MaritimesFrance

Personalised recommendations