Skip to main content

Zentrales (cerebrospinales) Nervensystem

  • Chapter
  • 64 Accesses

Part of the book series: Heidelberger Taschenbücher ((HTB,volume 139))

Zusammenfassung

Im Rumpfbereich entwickelt sich das Neuralrohr zum Rückenmark (s. auch Abschn. 11.1). Die Wand des Neuralrohrs verdickt sich durch massenhafte Zellteilungen. Den immer mehr eingeengten Hohlraum kleidet eine Schicht hochprismatischer Zellen aus (primäres Ependym), deren Fortsätze radiär zur Oberfläche des Neuralrohrs ziehen. Diese Ependymzellvorläufer bilden ein primäres Stützgerüst für die Zellmassen, die sich in Nervenstammzellen (Neuroblasten) und Gliastammzellen (Glioblasten) differenzieren. Die Fortsätze der Neuroblasten wachsen zur Oberfläche hin und erzeugen um das Neuralrohr einen Randschleier (Zona marginalis), während die Zellkörper medial liegen bleiben und eine Mantelzone (Zona nuclearis) um den Zentralkanal (Canalis centralis) bilden.

The erratum of this chapter is available at http://dx.doi.org/10.1007/978-3-662-00550-7_7

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Adata AK, Gehring EN (1971) Proprioceptive innervation of the tongue. J Anat 110: 215–220

    Google Scholar 

  • Ades HW, Engström H (1974) Anatomy of the inner ear. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Auditory System. Anatomy, physiology (ear). (Handbook of sensory physiology, vol V/1) Springer, Berlin Heidelberg New York

    Google Scholar 

  • Adey WR, Tokizane T (1967) Structure and function of the limbic system. Elsevier, Amsterdam

    Google Scholar 

  • Ajmone Marsan C (1965) The thalamus: Data on its functional anatomy and on some aspects of thalamo-cortical integration. Arch Ital Biol 103: 847–882

    Google Scholar 

  • Akert K (1959) Die Physiologie und Pathophysiologie des Hypothalamus. In: Schalten-brand G, Bailey P (Hrsg) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns. Thieme, Stuttgart

    Google Scholar 

  • Allison AC (1953) The morphology of the olfactory system in the vertebrate. Biol Rev 28: 195–244

    Google Scholar 

  • Angevine JB Jr, Mancall EL, Yakovlev PI (1961) The human cerebellum. An atlas of gross topography in serial sections. Little und Brown, Boston

    Google Scholar 

  • Angevine JB, Locke S, Yakovlev PT (1962) Limbic nuclei of thalamus and connections of limbic cortex: IV Thalamocortical projection of the ventral auterior nucleus in man. Arch Neurol 7: 518–528

    Google Scholar 

  • Bailey P, Von Bonin G (1951) The isocortex of man. Illinois monographs in the medical sciences, Vol 6. University of Illinois Press, Urbana

    Google Scholar 

  • Bargmann W, Schadé JP (1964) Lectures on the diencephalon. Elsevier, Amsterdam Barson M (1970) The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat 106: 489–497

    Google Scholar 

  • Beck C (1965) Anatomie des Ohres. In: Berendes J, Link R, Zöllner F (Hrsg) Hals-NasenOhren-Heilkunde, Bd III,/1. Thieme, Stuttgart

    Google Scholar 

  • Benjamin RM, Burton H (1968) Projection of taste nerve afferents to anterior opercularinsular cortex in squirrel monkey. Brain Res 7: 221–231

    PubMed  CAS  Google Scholar 

  • Berke JJ (1960) The claustrum, the external capsule and the extreme capsule of Macaca mulatta. J Comp Neurol 115: 297–331

    Google Scholar 

  • Bertrand G (1966) Stimulation during stereotactic operations for dyskinesias. J Neurosurg 24: 419–423

    Google Scholar 

  • Blechschmidt E (1961) Die vorgeburtlichen Entwicklungsstadien des Menschen. Karger, Basel

    Google Scholar 

  • Bloomfield S, Marr D (1970) How the cerebellum may be used. Nature 227:1224–1228 Boll ST (1928) Das Rückenmark. In: Möllendorf von W (Hrsg) Handbuch der mikroskopischen Anatomie des Menschen. Bd 4/1: Das periphere Nervensystem. Das Zentralnervensystem. Springer, Berlin

    Google Scholar 

  • Boyd IA (1962) The structure and innervation of the nuclear bag muscle fibre system and the nuclear chain muscle fibre system in mammalian muscle spindles. Philos Trans R Soc (Lond) 245: 81–136

    Google Scholar 

  • Braak H (1970) Über die Kerngebiete des menschlichen Hirnstammes. II. Die Raphekerne. Z Zellforsch 107: 123–141

    PubMed  CAS  Google Scholar 

  • Brain WR (1961) Speech disorders: Aphasia, apraxia, and agnosia. Butterworth, London Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Camp Neurol 109: 1–27

    Google Scholar 

  • Bridgman CF (1970) Comparisons in structure of tendon organs in the rat, cat and man. J Comp Neurol 138: 369–372

    PubMed  CAS  Google Scholar 

  • Broca P (1878) Anatomie comparée circonvolutious cérébrales. Le grand lobe limbique et la seissure limbique dans la série des mammifères. Rev Anthropol 2: 384–498

    Google Scholar 

  • Brodai A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. Oliver und Boyd, Edinburgh

    Google Scholar 

  • Brodmann K (1925) Vergleichende Lokalisationslehre der Großhirnrinde. Barth, Leipzig Caine DB, Sandler M (1970) L-dopa and Parkinsonism. Nature 226: 21–24

    Google Scholar 

  • Carpenter MB (1971) Central oculomotor pathways. In: Bach-y-Rita P, Hirschberg,(eds) The control of eye movements. Academic Press, New York, pp 67–103

    Google Scholar 

  • Carpenter MB, Pierson RJ (1973) Pretectal region and the pupillary light reflex. An anatomical analysis in the monkey. J Comp Neurol 149: 271–300

    Google Scholar 

  • Carpenter MB, Strominger NL (1965) The medial longitudinal fasciculus and disturbances of conjugate horizontal eye movements in the monkey. J Comp Neurol 125: 41–65

    PubMed  CAS  Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Cooke JD, Larson B, Oscarsson O, Sjölund B (1971) Origin and termination of cuneocerebellar tract. Exp Brain Res 13: 339–358

    PubMed  CAS  Google Scholar 

  • Couteaux R (1973) Motor and plate structure. In: Boume GH (ed) The structure and function of muscle. Academic Press, New York

    Google Scholar 

  • Cowan WM (1980) Die Entwicklung des Gehirns. In: Gehirn und Nervensystem. Spektrum der Wissenschaft, Weinheim, S 100–111

    Google Scholar 

  • Cowan WM, Raisman G, Powell TPS (1965) The connexions of the amygdala. J Neurol Neurosurg H Psychiatry 28: 137–151

    CAS  Google Scholar 

  • Crowe SJ (1935) Symposium on tone localization in the cochlea. Ann Otol Rhinol Laryngol 44: 737–837

    Google Scholar 

  • Dahlström A (1971) Regional distribution of brain catecholamines and serotonin. Neurosci Res Program Bull 9: 197–205

    PubMed  Google Scholar 

  • Dallos P, Billone MC, Durrant JD, Wong C-y, Raynor S (1972) Cochlear inner and outer hair cells: Functional differences. Science 177: 356–358

    Google Scholar 

  • Damasio H, Damasio AR (1980) The anatomical basis of conduction aphasia. Brain 103: 337–350

    PubMed  CAS  Google Scholar 

  • Denny-Brown D (1962) The basal ganglia and their relation to disorders of movement. Oxford University Press, London

    Google Scholar 

  • Dewulf A (1971) Anatomy of the normal human thalamus. Elsevier, Amsterdam Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164: 251–262

    Google Scholar 

  • Diepen R (1962) Der Hypothalamus. In. Bargmann W (Hrsg) Nervensystem. Springer,Berlin Göttingen Heidelberg (Handbuch der mikroskopischen Anatomie, Bd IV/7)

    Google Scholar 

  • Eccles JC (1962) Functional organization of the spinal cord. Anesthesiology 28: 31–45

    Google Scholar 

  • Eccles JC (1969) The dynamic loop hypothesis of movement control. In: Leibovic KN (ed) Information processing in the nervous system. Springer, Berlin Heidelberg New York, pp 245–269

    Google Scholar 

  • Eccles JC, Llinâs R, Sasahi K (1966) The inhibitory interneurons within the cerebellar cortex. Exp Brain Res 1: 1–16

    PubMed  CAS  Google Scholar 

  • Eccles JC, Ito M, Szentâgothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: An experimental study using an autoradiographic tracing method. Brain Res 48: 45–63

    PubMed  CAS  Google Scholar 

  • Eleftheriou BE (1972) The neurobiology of the amygdala. Plenum, New York Emmers R, Tasker RR ( 1975 ) The human somesthetic thalamus. Raven, New York

    Google Scholar 

  • Ettlinger EG, De Reuck AVS, Porter R (eds ) (1965) Functions of the corpus callosum.Churchill, London

    Google Scholar 

  • Feremutsch K (1961) Basalganglien. In: Hofer H, Schultz AH, Starck D (Hrsg) Primatologia, Bd II/2. Karger, Basel

    Google Scholar 

  • Fields WS, Willis WD (1970) The cerebellum in health and disease. Green, St. Louis

    Google Scholar 

  • Flumerfelt BA, Otabe S, Courville J (1973) Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res 50: 408–414

    PubMed  CAS  Google Scholar 

  • Foerster 0 (1936) Symptomatologie der Erkrankungen des Rückenmarks und seiner Wurzeln. In: Bumke O, Foerster O (Hrsg) Rückenmark. Hirnstamm. Kleinhirn. Springer, Berlin ( Handbuch der Neurologie, Bd V )

    Google Scholar 

  • Fox CA, Andrade AN, Lu Qui IJ, Rafols JA (1974) The primate globus paleidus: A golgi and electron microscopic study. J Hirnforsch 15: 75–93

    Google Scholar 

  • Frigyesi TL, Rinvik E, Yahr MD (1972) Thalamus. Raven, New York

    Google Scholar 

  • Garver DL, Sladek JR Jr (1975) Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of Macaca speciosa. J Comp Neurol 159: 289–304

    Google Scholar 

  • Gazzaniga MS (1967) The split brain in man. Sci Am 217 /2: 24–29

    PubMed  CAS  Google Scholar 

  • Gazzaniga MS (1970) The bisected brain. Appleton, New York

    Google Scholar 

  • Gazzaniga MS, Sperry RW (1967) Language after section of the cerebral commissures. Brain 90: 131–148

    PubMed  CAS  Google Scholar 

  • Gerhard L, Olszewski J (1969) Medulla oblongata and Pons. In: Hofer H, Schultz AH, Starck D (Hrsg) Primatologia, Bd II/2. Karger, Basel

    Google Scholar 

  • Geschwind N (1972) Language and the Brain. Sci Am 226: 76–83

    PubMed  CAS  Google Scholar 

  • Geschwind N (1980) Die Großhirnrinde in Gehirn und Nervensystem. Spektrum d Wissenschaft, Weinheim, S 112–121

    Google Scholar 

  • Geschwind N, Levitsky W (1968) Human brain: Leftright asymmetries in temporal speech region. Science 161: 186–187

    Google Scholar 

  • Giolli RA, Tigges J (1970) The primary optic pathways and nuclei of primates. In: Noback CR, Mantagua W (eds) The primate brain. Advances in primatology, Vol I. AppletonCentury-Crofts, New York, pp 29–54

    Google Scholar 

  • Hassler R (1959) Anatomie des Thalamus. In: Schaltenbrand G, Bailey P (Hrsg) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns. Thieme, Stuttgart, 5230–290

    Google Scholar 

  • Haymaker W, Anderson E, Nauta WJH (eds) (1969) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Heimer L (1975) Olfactory projections to the diencephalon. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Int Conf Neurobiology of CNS-Hormone Interactions, Chapel Hill 1974. Karger, Basel, pp 30–39

    Google Scholar 

  • Henkin RI, Graziadei PPG, Bradley DF (1969) The molecular basis of taste and its disorders. Ann Intern Med 71: 791–821

    PubMed  CAS  Google Scholar 

  • Hochstetter F (1929) Beiträge zur Entwicklungsgeschichte des menschlichen Gehirns. Deutike, Wien

    Google Scholar 

  • Hofer H (1965) Circumventrikuläre Organe des Zwischenhirns. In: Hofer H, Schultz AH, Starck D (Hrsg) Primatologia, Bd II/2. Karger, Basel

    Google Scholar 

  • Hubel DH (1967) The visual cortex of the brain. From cell to organism. Freeman, San Francisco, pp 54–62

    Google Scholar 

  • Isaacson RL (1974) The limbic system. Plenum Press, New York

    Google Scholar 

  • Jansen J, Brodai A (1958) Das Kleinhirn. In: Bargmann W (Hrsg) Nervensystem. Springer, Berlin Göttingen Heidelberg (Handbuch der mikroskopischen Anatomie, Erg zu Bd IV/1)

    Google Scholar 

  • Janzen R, Keidel WD, Herz A, Steichele C (1973) Schmerz, 3. Aufl Thieme, Stuttgart Jasper HH, Procton LD (eds) ( 1958 ) Reticular Formation of the brain. Little und Brown, Toronto, pp 3–31

    Google Scholar 

  • Jung R, Hassler R (1960) The extrapyramidal motor system. Am Physiol Soc 2:863–927 Kahle W ( 1969 ) Die Entwicklung der menschlichen Großhirnhemisphäre. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Keidel WD (1966) Anatomie und Elektrophysiologie der zentralen akustischen Bahnen. In: Berendes J, Link R, Zöllner F (Hrsg) Hals-Nasen-Ohren-Heilkunde, Bd III/3. Thieme, Stuttgart

    Google Scholar 

  • Kemp JM, Powell TPS (1971) The connections of the striatum and globus pallidus: Synthesis and speculation. Philos Trans R Soc Lond [Biol] 262: 441–457

    Google Scholar 

  • Kemper TL (1976) The organization and connections of the human septum and septal area. Anat Rec 184: 444

    Google Scholar 

  • Kennedy WR (1970) Innervation of normal human muscle spindles. Neurology (Min-neap) 20: 463–475

    CAS  Google Scholar 

  • Kerr FWL (1975) Neuroanatomical substrates of nociception in the spinal cord. Pain 1: 325–356

    PubMed  CAS  Google Scholar 

  • Kerr FWL, Lippmann HH (1974) The primate spinothalamic tract as demonstrated by

    Google Scholar 

  • anterolateral cordotomy and commissural myelotomy. Adv Neurol 4:147–156

    Google Scholar 

  • Kety SS (1970) The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In: Schmitt FO (ed) Neurosciences. Rockefeller University Press, New York, pp 324–336

    Google Scholar 

  • Kimura RS, Schuknecht HF, Sando I (1965) Fine morphology of the sensory cells in the organ of Corti of man. Acta Otolaryngol (Stockh) 58: 390–408

    Google Scholar 

  • Kinsbourne M, Smith WL (1974) Hemispheric disconnection and cerebral function. Thomas, Springfield

    Google Scholar 

  • Knight J (1970) Mechanisms of taste and smell in vertebrates. Ciba Symposium. Churchill, London

    Google Scholar 

  • Koikegami H (1963) Amygdala and other related limbic structures; experimental studies on the anatomy and function. I. Anatomical researches with some neurophysiological observations. Acta Med Biol 10: 161–277

    PubMed  CAS  Google Scholar 

  • Kuypers HGJM (1973) The anatomical organization of the descending pathways and their contributions to motor control especially in primates. In: Desmedt JE (ed) New

    Google Scholar 

  • developments in EMG and clinical neurophysiology, vol 3. Karger, Basel, pp 38–68 LaMotte C (1977) Distribution of the tract of Lissauer and the dorsal root fibers in the primate spinal cord. J Comp Neurol 172: 529–561

    Google Scholar 

  • Lange W (1972) Über regionale Unterschiede in der Myeloarchitektonik der Kleinhirnrinde. Z Zellforsch 134: 129

    PubMed  CAS  Google Scholar 

  • Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum. I II. The human cerebellum, cerebellar connections and cerebellar cortex. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Levitt P, Moore RY (1979) Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186: 505–528

    PubMed  CAS  Google Scholar 

  • Livingston KE, Escobar A (1971) Anatomical basis of the limbic system concept: A proposed reorientation. Arch Neurol 24: 17–21

    Google Scholar 

  • Lorente de N6 R (1949) Cerebral cortex: Archicture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, 3rd edn. Oxford University Press, New York, p288

    Google Scholar 

  • Manni E, Palmieri G, Marini R (1971) Peripheral pathway of the proprioceptive afferents from the lateral rectus muscle of the eye. Exp Neurol 30: 46–53

    PubMed  CAS  Google Scholar 

  • Mehler WR (1962) The anatomy of the socalled „pain tract“ in man: An analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Thomas, Springfield (Ill.), pp 26–55 Basic research in paraplegia

    Google Scholar 

  • Mehler WR (1971) Idea of a new anatomy of the thalamus. J Psychiatr Res 8:203–217 Mehler WR, Nauta WJH (1974) Connections of the basal ganglia and of the cerebellum. Confin Psychiatr 36: 205–222

    Google Scholar 

  • Missotten L (1965) The ultrastructure of the human retina. ARSCIA, Brussels

    Google Scholar 

  • Morgane PJ (1966) The role of the limbic-midbrain circuit, reticular formation and hypothalamus in regulating food and water intake. Proc. 7th Int Congr Nutrition Hamburg 1966, vol II. Vieweg, Braunschweig

    Google Scholar 

  • Morgane PJ (1969) The function of the limbic and rhinic forebrain-limbic midbrain systems and reticular formation in the regulation of food and water intake. Ann NY Acad Sci 157: 806–848

    PubMed  CAS  Google Scholar 

  • Morgane PJ (1975) Anatomical and neurobiochemical bases of the central nervous control of physiological regulations and behaviour. In: Mogenson G, Calaresu F (eds) Neural integration of physiologic. Mechanisms and behaviour. University of Toronto Press, Toronto, pp 24–67

    Google Scholar 

  • Morgane PJ, Panksepp J (1979) (eds). In: Handbook of the Hypothalamus, vol 1: Anatomy of the hypothalamus. Dekker, New York Basel (Handbook of the hypothalamus, vol I )

    Google Scholar 

  • Mountcastle VB (ed) (1962) Interhemispheric relations and cerebral dominance. Hopkins, Baltimore

    Google Scholar 

  • Mugnaini E, Osen KK, Dahl AL, Friedrich VL Jr, Korte G (1980) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat and mouse. J Neurocytol 9: 537–570

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1959) Fasciculi proprii of the spinal cord in man: Review of present knowledge. Brain 82: 610–668

    Google Scholar 

  • Nieuwenhuys R (1974) Topological analysis of the brain stem: a general introduction. J Comp Neurol 156: 255–276

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1977) Aspects of the morphology of the striatum. In: Cools AR, Lohman AHM, van den Bercken JHL (eds) Psychobiology of the Striatum. Elsevier, Amsterdam, pp 1–19 ’

    Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen Ch (1980) Das Zentralnervensystem des Menschen. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nishi K, Oura C, Pallie W (1969) Fine structure of Pacinian corpuscles in the mesentery of the cat. J Cell Biol 43: 539–552

    PubMed  CAS  Google Scholar 

  • Noback Ch, Harting J (1971) Spinal cord. In: Hofer M, Schultz AH, Starck D (Hrsg) Primatologie, Bd II/1. Karger, Basel

    Google Scholar 

  • Nobin A, Björklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand [Suppl] 388: 1–40

    CAS  Google Scholar 

  • Norgren RE (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166: 17–30

    PubMed  CAS  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the human brain stem. Karger, Basel Palay SL, Chan-Palay V ( 1974 ) Cerebellar cortex. Cytology and organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Pasquier DA (1976) Evidence of direct projections from the centralis superior, dorsalis raphe and locus coeruleus nuclei to dorsal and ventral hippocampus in the cat. Anat Rec 184: 498

    Google Scholar 

  • Penfield W, Milner B (1958) Memory deficit produced by bilateral lesions in the hippocampal zone. Arch Neurol Psychiatry 79: 475–497

    CAS  Google Scholar 

  • Penfield W, Rasmussen T (1950) The cerebral cortex of man: A clinical study of localization of function. Macmillan, New York

    Google Scholar 

  • Poirier LJ, Sourkes TL (1965) Influence of the substantia nigra on catecholamine content of the striatum. Brain 88: 181–192

    PubMed  CAS  Google Scholar 

  • Purpura DP, Yahr MD (eds) (1966) The thalamus. Columbia University Press, New York Reiter RJ, Fraschini F (1969) Endocrine aspects of the mammalian pineal gland: A review. Neuroendocrinology 5: 219–255

    Google Scholar 

  • Renshaw B (1946) Central effects of centripetal impulses in axons of spinal ventral root. J Neurophysiol 9: 191–204

    PubMed  CAS  Google Scholar 

  • Réthelyi M, Szentâgothai J (1969) The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7: 258–274

    PubMed  Google Scholar 

  • Rexed BA (1954) Cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100: 297–379

    PubMed  CAS  Google Scholar 

  • Rexed BA (1964) Some aspects of the cytoarchitectonic and synaptology of the spinal cord. Prog Brain Res 2: 58–90

    Google Scholar 

  • Richter E (1965) Die Entwicklung des Globus pallidus und des Corpus subthalamicum. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Rohen JW (1964) Das Auge und seine Hilfsorgane. In: Bargmann W (Hrsg) Haut-und Sinnesorgane. Springer, Berlin Göttingen Heidelberg New York (Handbuch der mikroskopischen Anatomie, Ergänzung zu Bd III/2)

    Google Scholar 

  • Schaltenbrand G, Bailey P (1959) Einführung in die stereotaktischen Operationen mit einem Atlas des menschlichen Gehirns. 3 Bände. Thieme, Stuttgart

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966) Spinal motoneurons, interneurons and Renshaw cells: A Golgi study. Arch Ital Biol 104: 328–353

    Google Scholar 

  • Schliack H (1969) Segmental innervation and the clinical aspects of spinal nerve root syndromes. In: Vinken PJ, Bruyn GW (eds) North-Holland, Amsterdam (Handbook of clinical neurology, vol II: Localization in clinical neurology pp 157–177

    Google Scholar 

  • Siegel JM (1979) Behavioral functions of the reticular formation. Brain Res 1:69–105 Sinclair D ( 1967 ) Cutaneous sensation. Oxford University Press, London

    Google Scholar 

  • Smith MC (1957) Observations on the topography of the lateral column of the human cervical spinal cord. Brain 80: 263–272

    PubMed  CAS  Google Scholar 

  • Smith MC (1967) Stereotactic operations for Parkinson’s disease: Anatomical observations. In: Williams D (ed) Modern trends in Neurology. Butterworth, London, pp 21–52

    Google Scholar 

  • Spatz H (1935) Anatomie des Mittelhirns. In: Bumke O, Foerster O (Hrsg) Allgemeine Neurologie. Springer, Berlin ( Handbuch der Neurologie, Bd I )

    Google Scholar 

  • Sperry RW (1964) The great cerebral commissure. Sci Am 210: 42–52

    PubMed  CAS  Google Scholar 

  • Sperry RW (1969) A modified concept of consciousness. Psychol Rev 76:532–536 Sperry RW ( 1970 ) Cerebral dominance in perception. Natl Acad Sci

    Google Scholar 

  • Starck D (1965) Die Neencephalisation. In: Heberer G (Hrsg) Menschliche Abstammungslehre. Fischer, Stuttgart

    Google Scholar 

  • Stephan H (1964) Die kortikalen Anteile des limbischen Systems. Nervenarzt 35:396 Stephan H (1975) Allocortex. In: Bargmann W (Hrsg) Nervensystem. Springer, Berlin

    Google Scholar 

  • Heidelberg New York (Handbuch der mikroskopischen Anatomie, Bd IV/9) Straatsma BR, Hall MO, Allen RA, Crescitelli F (1969) The retina, morphology, function and clinical characteristics. University California Press, Berkeley

    Google Scholar 

  • Straile WE (1969) Encapsulated nerve end-organs in the rabbit, mouse, sheep and man. J Comp Neurol 136: 317–335

    PubMed  CAS  Google Scholar 

  • Symonds C (1966) Disorders of memory. Brain 89: 625–644

    PubMed  CAS  Google Scholar 

  • Szentagothai J (1969) Architecture of the cerebral cortex. In: Jasper H H, Ward AA, Pope A (eds) Basic mechanisms of the epilepsies. Little und Brown, Boston, pp 13–28

    Google Scholar 

  • Taber E, Brodal A, Walberg F (1960) The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion. J Comp Neurol 114: 161–187

    Google Scholar 

  • Terzian H, Dalle Ore G (1955) Syndrome of Klüver and Bucy: Reproduced in man by bilateral removal of the temporal lobes. Neurology (Minneap) 5: 373–380

    Google Scholar 

  • Tower DB, Schadé JP (eds) (1960) Structure and function of the cerebral cortex. Elsevier, Amsterdam

    Google Scholar 

  • Truex RC, Taylor M (1968) Gray matter lamination of the human spinal cord. Anat Rec 160: 502

    Google Scholar 

  • Von Bouin G, Shariff GA (1951) Extrapyramidal nuclei among mammals. J Comp Neuron 94: 427–438

    Google Scholar 

  • Van Buren JM, Borke RC (1972) Variations and connections of the human thalamus. 2 vols. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Voogd J (1967) Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res 25: 94–135

    PubMed  CAS  Google Scholar 

  • Voorhoeve PE (1970) Some neurophysiological aspects of Parkinson’s disease. Psychiatr Neurol Neurochir 73: 329–338

    PubMed  CAS  Google Scholar 

  • Walker AE (1938) The primate thalamus. University Press, Chicago

    Google Scholar 

  • Wall PD (1970) The sensory and motor role of impulses travelling in the dorsal columns towards cerebral cortex. Brain 93: 505–524

    PubMed  CAS  Google Scholar 

  • Warwick R (1955) The so-called nucleus of convergence. Brain 78: 92–114

    PubMed  CAS  Google Scholar 

  • Webster KE (1965) The cortico-striatal projection in the cat. J Anat 99:329–337 Whitfield IC (1967) The auditory pathway. Monographs of the physiological society, No 17. Arnold, London

    Google Scholar 

  • Wiesendanger M (1969) The pyramidal tract. In: Ergebnisse der Physiologie, Bd61. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Wurtman RJ, Axelrod JA, Kelly DE (1968) The pineal. Academic Press, New York Zotterman Y ( 1963 ) Olfaction and taste. Pergamon Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Forssmann, W.G., Heym, C. (1982). Zentrales (cerebrospinales) Nervensystem. In: Neuroanatomie. Heidelberger Taschenbücher, vol 139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00550-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00550-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-11404-8

  • Online ISBN: 978-3-662-00550-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics