On Solitary Waves in Biology

  • Jean-Michel Lasry
Conference paper
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 257)


How do biological systems process information, and especially information of logical type (integers, yes/no decisions)? One small aspect of this general topic is the question of how biological systems deal with “long-distance” communication (from one end of the organism to the other). This is one of the functions of the nervous system: nerves are able to carry spikes for distances which are very large on the cellular scale (the axons on which “spikes” travel are the only known examples of such long cells or cell components).


Solitary Wave Hopf Bifurcation Unstable Equilibrium Kolmogorov Equation Periodic Trajectory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.P. Changeux, P. Courrège and A. Danchin. A theory of the epigenesis of neural networks by selective stabilization of synapses. Proc. Nat. Acad. Sci., USA 70 (1973) 2974–2978.Google Scholar
  2. 2.
    J.P Changeux, P. Courrège and A. Danchin. A group of works on the epigenesis of the nervous system. Internal reports.Google Scholar
  3. 3.
    J.P. Changeux, P. Courrège, A. Danchin and J.P. Lasry. Un mécanisme biochimique pour l’épigenèse de la jonction neuromusculaire. C.R. Acad. Sci., Paris 292 (1981) 449–453.Google Scholar
  4. 4.
    C. Lobry and C. Reder. Deux remarques sur les modèles susceptibles de representer les réactions chimiques oscillantes. University of Bordeaux I, internal report.Google Scholar
  5. 5.
    C. Reder. Sur la représentation mathématique de mécanismes de réaction—diffusion. Thesis, University of Bordeaux I, 1984.Google Scholar
  6. 6.
    P. de Kepper. Contribution à l’étude de systèmes dissipatifs chimiques: réactions oscillantes de Briggs—Rauscher et de Belousov—Zhabd:otinskii. Thesis, University of Bordeaux I, 1978.Google Scholar
  7. 7.
    J.M. Lasry. Un système parabolique produisant des solitons. Cahier de Math. de la Décision,8203. CEREMADE, University of Paris—Dauphine, 1982 (see also [8]).Google Scholar
  8. 8.
    J.M. Lasry. Sur les systdmes parabolique produisant des solitons. Proceedings of the 4th seminar of the School of Theoretical Biology ( 4–8 June 1984 ). Forthcoming.Google Scholar
  9. 9.
    L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve membranes. J. Physiol. 117 (1952) 500–544.Google Scholar
  10. 10.
    R. Fitzhugh. Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1 (1961) 445–466.CrossRefGoogle Scholar
  11. 11.
    M. Bramson. Convergence of solutions of the Kolmogorov equation to travelling waves. Memoirs AMS 285 (44) 1983.Google Scholar

Copyright information

© International Institute for Applied Systems Analysis, Laxenburg/Austria 1985

Authors and Affiliations

  • Jean-Michel Lasry
    • 1
  1. 1.CEREMADEUniversity Of Paris-DauphineParisFrance

Personalised recommendations