Advertisement

Erregung von Nerv und Muskel

  • J. Dudel

Zusammenfassung

Nerven- und Muskelzellen, wie auch andere Zellen unseres Körpers, werden durch eine Lipoid-Eiweiß-Membran begrenzt, die elektrisch als guter Isolator wirkt. Über dieser Membran, d.h. zwischen dem Inneren der Zelle und der extracellulären Flüssigkeit, besteht in der Regel eine elektrische Potentialdifferenz, das Membranpotential. Dieses Potential beeinflußt die Austauschvorgänge durch die Membran und ist in dieser Hinsicht z.B. für die Funktion des Epithels der Nierentubuli wichtig (s. Kap. XXVIII u. XXIX). An Nerv- und Muskelzellen werden Änderungen des Membranpotentials Grundlage der Funktion dieser Zellen, nämlich Informationsübertragung und Kontraktion. Das Membranpotential und seine Änderungen müssen deshalb hier ausführlich besprochen werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Davson, H.: A Textbook of General Physiology, 4th Ed. London: Churchill 1970.Google Scholar
  2. 2.
    Gaver, O.H., Kramer, K., Jung, R. (Hrsg.): Physiologie des Menschen. Band 10: Allgemeine Neurophysiologie. München: Urban & Schwarzenberg 1974.Google Scholar
  3. 3.
    Katz, B.: Nerv, Muskel und Synapse. Stuttgart: Thieme 1971.Google Scholar
  4. 4.
    Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966.Google Scholar

Sammlung der richtigsten Originalarbeiten

  1. 5.
    Cooke, I., Lipkin, M.: Cellular Neurophysiology, a source book. New York: Holt. Rinehart and Winston 1972.Google Scholar

Originalarbeiten

  1. 6.
    Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (tond.) 133, 631 (1956).Google Scholar
  2. 7.
    Adrian, RH., Freygang, W.H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163, 61 (1962).Google Scholar
  3. 8.
    Carpenter, D.O., Alving, B.O.: A contribution of an electrogenic Napump to membrane potential in Aplysia neurons. J. gen. Physiol. 52, 1 (1968).PubMedCrossRefGoogle Scholar
  4. 9.
    Dudel, J., Trautwein, W.: Elektrophysiologische Messungen zur Strophanthinwirkung am Herzmuskel. Arch. exper. Path. Pharmakol. 232, 393 (1958).CrossRefGoogle Scholar
  5. 10.
    Eccles, J.: The physiology of nerve cells. Baltimore: Johns-HopkinsPress 1957.Google Scholar
  6. 11.
    Frankeniiaccser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137. 218 (1957).Google Scholar
  7. 12.
    Frankenhaiiuser, B., Huxley, A.F.: Action potential in myelinated nerve fibre of Xenopus laevis as computed on basis of voltage clamp data. J. Physiol. (Lond.) 171, 302 (1964).Google Scholar
  8. 13.
    Gasser, H.S., Grundeest, H.: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A-fibers. Amer. J. Physiol. 127, 393 (1939).Google Scholar
  9. 14.
    Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637 (1972).PubMedCrossRefGoogle Scholar
  10. 15.
    Hodgkin, A.L., Horowicz, I.: The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J. Physiol. (tond.) 153, 370 (1960).Google Scholar
  11. 16.
    Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449 (1952).Google Scholar
  12. 17.
    Hddgkon, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473 (1952).Google Scholar
  13. 18.
    Ioockin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lund.) 116, 497 (1952).Google Scholar
  14. 19.
    Ioiukin, A. L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Loud.) 117, 500 (1952).Google Scholar
  15. 20.
    Hodgkin, A.L., Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo1. Physiol. (Load.) 128, 28 (1955).Google Scholar
  16. 21.
    Iloookin. A.L., Rushton, WA..: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B 133, 444 (1946).Google Scholar
  17. 22.
    Huxi, EV, A.F., Stämpru, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (tond.) 108, 315 (1949).Google Scholar
  18. 23.
    Hotm (IAN, J.F.: Molecular mechanism of active cation transport. In Biophysics of Physiological and Pharmacological Actions (llrsg. Shanes). Washington: Amer. Ass. Adv. Sci. 1961.Google Scholar
  19. 24.
    Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B. 135, 506 (1948).Google Scholar
  20. 25.
    Kum, IR, S.W.: Mechanism of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17, 558 (1954).Google Scholar
  21. 26.
    Lloyd, D.P.C., Chang, H.T.: Afferent fibers in muscle nerves..1. Neurophysiol. 11. 199 (1948).Google Scholar
  22. 27.
    Mullins, L.J., Awad, M.Z.: The control of the membrane potential of muscle fibers by the sodium pump. J. gen. Physiol. 48, 761 (1965).PubMedCrossRefGoogle Scholar
  23. 28.
    Naraitastu, T.: Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31, 1124 (1972).Google Scholar
  24. 29.
    Narahasiü, T., Moori, I. W.: Neuroactive agents and nerve membrane conductances. J. gen. Physiol. 51, 93 (1968).Google Scholar
  25. 30.
    Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, I (1966).Google Scholar
  26. 31.
    Rang, H.P., Ritchie, I.M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lund.) 196, 183 (1968).Google Scholar
  27. 32.
    Terzuolo, C.A., Washizu, Y.: Relation between stimulus strength. generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25. 56 (1962).PubMedGoogle Scholar
  28. 33.
    Weidmann, S.: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Load.) 129. 568 (1955).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • J. Dudel

There are no affiliations available

Personalised recommendations