Skip to main content
  • 85 Accesses

Zusammenfassung

Nerven- und Muskelzellen, wie auch andere Zellen unseres Körpers, werden durch eine Lipoid-Eiweiß-Membran begrenzt, die elektrisch als guter Isolator wirkt. Über dieser Membran, d.h. zwischen dem Inneren der Zelle und der extracellulären Flüssigkeit, besteht in der Regel eine elektrische Potentialdifferenz, das Membranpotential. Dieses Potential beeinflußt die Austauschvorgänge durch die Membran und ist in dieser Hinsicht z.B. für die Funktion des Epithels der Nierentubuli wichtig (s. Kap. XXVIII u. XXIX). An Nerv- und Muskelzellen werden Änderungen des Membranpotentials Grundlage der Funktion dieser Zellen, nämlich Informationsübertragung und Kontraktion. Das Membranpotential und seine Änderungen müssen deshalb hier ausführlich besprochen werden.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Davson, H.: A Textbook of General Physiology, 4th Ed. London: Churchill 1970.

    Google Scholar 

  2. Gaver, O.H., Kramer, K., Jung, R. (Hrsg.): Physiologie des Menschen. Band 10: Allgemeine Neurophysiologie. München: Urban & Schwarzenberg 1974.

    Google Scholar 

  3. Katz, B.: Nerv, Muskel und Synapse. Stuttgart: Thieme 1971.

    Google Scholar 

  4. Ruch, T.C., Patton, H.D.: Physiology and Biophysics. Philadelphia: Saunders 1966.

    Google Scholar 

Sammlung der richtigsten Originalarbeiten

  1. Cooke, I., Lipkin, M.: Cellular Neurophysiology, a source book. New York: Holt. Rinehart and Winston 1972.

    Google Scholar 

Originalarbeiten

  1. Adrian, R.H.: The effect of internal and external potassium concentration on the membrane potential of frog muscle. J. Physiol. (tond.) 133, 631 (1956).

    CAS  Google Scholar 

  2. Adrian, RH., Freygang, W.H.: The potassium and chloride conductance of frog muscle membrane. J. Physiol. (Lond.) 163, 61 (1962).

    CAS  Google Scholar 

  3. Carpenter, D.O., Alving, B.O.: A contribution of an electrogenic Napump to membrane potential in Aplysia neurons. J. gen. Physiol. 52, 1 (1968).

    Article  PubMed  CAS  Google Scholar 

  4. Dudel, J., Trautwein, W.: Elektrophysiologische Messungen zur Strophanthinwirkung am Herzmuskel. Arch. exper. Path. Pharmakol. 232, 393 (1958).

    Article  CAS  Google Scholar 

  5. Eccles, J.: The physiology of nerve cells. Baltimore: Johns-HopkinsPress 1957.

    Google Scholar 

  6. Frankeniiaccser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.) 137. 218 (1957).

    Google Scholar 

  7. Frankenhaiiuser, B., Huxley, A.F.: Action potential in myelinated nerve fibre of Xenopus laevis as computed on basis of voltage clamp data. J. Physiol. (Lond.) 171, 302 (1964).

    Google Scholar 

  8. Gasser, H.S., Grundeest, H.: Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian A-fibers. Amer. J. Physiol. 127, 393 (1939).

    Google Scholar 

  9. Hille, B.: The permeability of the sodium channel to metal cations in myelinated nerve. J. gen. Physiol. 59, 637 (1972).

    Article  PubMed  CAS  Google Scholar 

  10. Hodgkin, A.L., Horowicz, I.: The effect of sudden changes in ionic concentrations on the membrane potential of single muscle fibres. J. Physiol. (tond.) 153, 370 (1960).

    CAS  Google Scholar 

  11. Hodgkin, A.L., Huxley, A.F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.) 116, 449 (1952).

    CAS  Google Scholar 

  12. Hddgkon, A.L., Huxley, A.F.: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.) 116, 473 (1952).

    Google Scholar 

  13. Ioockin, A.L., Huxley, A.F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lund.) 116, 497 (1952).

    Google Scholar 

  14. Ioiukin, A. L., Huxley, A.F.: Quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Loud.) 117, 500 (1952).

    Google Scholar 

  15. Hodgkin, A.L., Keynes, R.D.: Active transport of cations in giant axons from Sepia and Loligo1. Physiol. (Load.) 128, 28 (1955).

    CAS  Google Scholar 

  16. Iloookin. A.L., Rushton, WA..: The electrical constants of a crustacean nerve fibre. Proc. roy. Soc. B 133, 444 (1946).

    Google Scholar 

  17. Huxi, EV, A.F., Stämpru, R.: Evidence for saltatory conduction in peripheral myelinated nerve fibres. J. Physiol. (tond.) 108, 315 (1949).

    Google Scholar 

  18. Hotm (IAN, J.F.: Molecular mechanism of active cation transport. In Biophysics of Physiological and Pharmacological Actions (llrsg. Shanes). Washington: Amer. Ass. Adv. Sci. 1961.

    Google Scholar 

  19. Katz, B.: Electrical properties of the muscle fibre membrane. Proc. roy. Soc. B. 135, 506 (1948).

    Google Scholar 

  20. Kum, IR, S.W.: Mechanism of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17, 558 (1954).

    Google Scholar 

  21. Lloyd, D.P.C., Chang, H.T.: Afferent fibers in muscle nerves..1. Neurophysiol. 11. 199 (1948).

    CAS  Google Scholar 

  22. Mullins, L.J., Awad, M.Z.: The control of the membrane potential of muscle fibers by the sodium pump. J. gen. Physiol. 48, 761 (1965).

    Article  PubMed  CAS  Google Scholar 

  23. Naraitastu, T.: Mechanism of action of tetrodotoxin and saxitoxin on excitable membranes. Fed. Proc. 31, 1124 (1972).

    Google Scholar 

  24. Narahasiü, T., Moori, I. W.: Neuroactive agents and nerve membrane conductances. J. gen. Physiol. 51, 93 (1968).

    Google Scholar 

  25. Noble, D.: Applications of Hodgkin-Huxley equations to excitable tissues. Physiol. Rev. 46, I (1966).

    Google Scholar 

  26. Rang, H.P., Ritchie, I.M.: Electrogenic sodium pump in mammalian non-myelinated nerve fibres and its activation by various external cations. J. Physiol. (Lund.) 196, 183 (1968).

    CAS  Google Scholar 

  27. Terzuolo, C.A., Washizu, Y.: Relation between stimulus strength. generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25. 56 (1962).

    PubMed  CAS  Google Scholar 

  28. Weidmann, S.: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Load.) 129. 568 (1955).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dudel, J. (1976). Erregung von Nerv und Muskel. In: Schmidt, R.F., Thews, G. (eds) Einführung in die Physiologie des Menschen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00530-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00530-9_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00531-6

  • Online ISBN: 978-3-662-00530-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics