Approximation algorithms for three-dimensional assignment problems with triangle inequalities

  • Yves Crama
  • Alwin G. Oerlemans
  • Frits C. R. Spieksma
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 414)


Consider the following classical formulation of the (axial) three-dimensional assignment problem (3DA) (see e.g. Balas and Saltzman (1989)). Given is a complete tripartite graph K n,n,n = (IJK, (I × J) ∪ (I × K) ∪ (J × K)), where I, J, K are disjoint sets of size n, and a cost c ijk for each triangle (i, j,k) ∈ I × J × K. The problem 3DA is to find a subset A of n triangles, AI × J × K, such that every element of I ∪ J ∪ K occurs in exactly one triangle of A, and the total cost c(A) = ∑(i,j,k) ∈A c ijk is minimized. Some recent references to this problem are Balas and Saltzman (1989), Frieze (1974), Frieze and Yadegar (1981), Hansen and Kaufman (1973).


Feasible Solution Approximation Algorithm Triangle Inequality Approximate Algorithm Bipartite Match Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • Yves Crama
    • 1
  • Alwin G. Oerlemans
    • 2
  • Frits C. R. Spieksma
    • 3
  1. 1.Faculté d’ Economie, de Gestion et de Sciences SocialesUniversité de LiègeLiègeBelgium
  2. 2.Ministerie van FinanciënThe HagueThe Netherlands
  3. 3.Department of MathematicsRijksuniversiteit LimburgMaastrichtThe Netherlands

Personalised recommendations