Introduction and Background Information

  • Kurt Faber


Any exponents of classical organic chemistry will probably hesitate to consider a biochemical solution for one of their synthetic problems. This would be due, very often, to the fact, that biological systems would have to be handled. When growth and maintainance of whole microorganisms is concerned, such hesitation is probably justified. In order to save endless frustrations a close collaboration with a biochemist is highly recommended to set up and use fermentation systems [1,2]. On the other hand isolated enzymes (which may be obtained increasingly easily from commercial sources either in a crude or partially purified form) can be handled like any other chemical catalyst [3]. Due to the enormous complexity of biochemical reactions compared to the repertoire of classical organic reactions, it follows that most of the methods described will have a strong empirical aspect. This ‘black box’ approach may not entirely satisfy the scientific purists, but as organic chemists are rather prone to be pragmatists, they may accept that the understanding of a biochemical reaction mechanism is not a conditio sine qua non for the success of a biotransformation. In other words, a lack of understanding of biochemical reactions should never deter us from using them if their usefulness has been established. Notwithstanding, it is undoubtedly an advantage to have an acquaintance with basic biochemistry, and with enzymology, in particular.


Enzyme Property Asymmetric Synthesis Chemical Catalyst Chemical Operator Conditio Sine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodhue CT (1982) Microb. Transform. Bioact. Compd. 1: 9Google Scholar
  2. 2.
    Roberts SM, Turner NJ, Willetts AJ, Turner MK (1995) Introduction to Biocatalysis Using Enzymes and Micro-organisms, Cambridge University Press, CambridgeCrossRefGoogle Scholar
  3. 3.
    The majority of commonly used enzyme preparations are available through chemical suppliers. Nevertheless, for economic reasons, it may be worth contacting an enzyme producer directly, in particular if bulk quantities are required. For a list of enzyme suppliers see the appendix.Google Scholar
  4. 4.
    Baross JA, Deming JW (1983) Nature 303: 423CrossRefGoogle Scholar
  5. 5.
    Laane C, Boeren S, Vos K, Veeger C (1987) Biotechnol. Bioeng. 30: 81CrossRefGoogle Scholar
  6. 6.
    Carrea G, Ottolina G, Riva S (1995) Trends Biotechnol. 13: 63CrossRefGoogle Scholar
  7. 7.
    Bell G, Hailing PJ, Moore BD, Partridge J, Rees DG (1995) Trends Biotechnol. 13: 468CrossRefGoogle Scholar
  8. 8.
    Gutman AL, Shapira M (1995) Synthetic Applications of Enzymatic Reactions in Organic Solvents. In: Fiechter A (ed) Adv. Biochem. Eng. Biotechnol., vol 52, pp 87–128, Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. 9.
    Menger FM (1993) Acc. Chem. Res. 26: 206CrossRefGoogle Scholar
  10. 10.
    Only proteases are exceptions to this rule for obvious reasons.Google Scholar
  11. 11.
    Sih CJ, Abushanab E, Jones JB (1977) Ann. Rep. Med. Chem. 12: 298CrossRefGoogle Scholar
  12. 12.
    Boland W, Frößl C, Lorenz M (1991) Synthesis 1049Google Scholar
  13. 13.
    Schmidt-Kastner G, Egerer P (1984) Amino Acids and Peptides. In: Kieslich K (ed) Biotechnology, Verlag Chemie, Weinheim, volume 6a, pp 387–419Google Scholar
  14. 14.
    Gutman AL, Zuobi K, Guibe-Jampel E (1990) Tetrahedron Lett. 31: 2037CrossRefGoogle Scholar
  15. 15.
    Taylor SJC, Sutherland AG, Lee C, Wisdom R, Thomas S, Roberts SM, Evans C (1990) J. Chem. Soc., Chem. Commun. 1120Google Scholar
  16. 16.
    Zhang D, Poulter CD (1993) J. Am. Chem. Soc. 115: 1270CrossRefGoogle Scholar
  17. 17.
    Yamamoto Y, Yamamoto K, Nishioka T, Oda J (1988) Agric. Biol. Chem. 52: 3087CrossRefGoogle Scholar
  18. 18.
    Leak DJ, Aikens PJ, Seyed-Mahmoudian M (1992) Trends Biotechnol. 10: 256CrossRefGoogle Scholar
  19. 19.
    Nagasawa T, Yamada H (1989) Trends Biotechnol. 7: 153CrossRefGoogle Scholar
  20. 20.
    Mansuy D, Battoni P (1989) Alkane Functionalization by Cytochromes P-450 and by Model Systems Using O2 or H2O2. In: Hill CL (ed) Activation and Functionalization of Alkanes, Wiley, New YorkGoogle Scholar
  21. 21.
    May SW (1979) Enzyme Microb. Technol. 1: 15CrossRefGoogle Scholar
  22. 22.
    Boyd DR, Dorrity MRJ, Hand MV, Malone JF, Sharma ND, Dalton H, Gray DJ, Sheldrake GN (1991) J. Am. Chem. Soc. 113: 667CrossRefGoogle Scholar
  23. 23.
    Lemiere GL, Lepoivre JA, Alderweireldt FC (1985) Tetrahedron Lett. 26: 4527CrossRefGoogle Scholar
  24. 24.
    Walsh CT, Chen Y-C J (1988) Angew. Chem., Int. Ed. Engl. 27: 333CrossRefGoogle Scholar
  25. 25.
    Servi S (1990) Synthesis 1Google Scholar
  26. 26.
    Phillips RS, May SW (1981) Enzyme Microb. Technol. 3: 9CrossRefGoogle Scholar
  27. 27.
    Findeis MH, Whitesides GM (1987) J. Org. Chem. 52: 2838CrossRefGoogle Scholar
  28. 28.
    Akhtar M, Botting NB, Cohen MA, Gani D (1987) Tetrahedron 43: 5899CrossRefGoogle Scholar
  29. 29.
    Effenberger F, Ziegler Th (1987) Angew. Chem., Int. Ed. Engl. 26: 458CrossRefGoogle Scholar
  30. 30.
    Neidleman SL, Geigert J (1986) Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood Ltd., ChichesterGoogle Scholar
  31. 31.
    Buist PH, Dimnik GP (1986) Tetrahedron Lett. 27: 1457CrossRefGoogle Scholar
  32. 32.
    Schwab JM, Henderson BS (1990) Chem. Rev. 90: 1203CrossRefGoogle Scholar
  33. 33.
    Fuganti C, Grasselli P (1988) Baker’s Yeast Mediated Synthesis of Natural Products. In: Whitaker JR, Sonnet PE (eds) Biocatalysis in Agricultural Biotechnology, ACS Symposium Series, volume 389, pp 359-370Google Scholar
  34. 34.
    Toone EJ, Simon ES, Bednarski MD, Whitesides GM (1989) Tetrahedron 45: 5365CrossRefGoogle Scholar
  35. 35.
    Kitazume T, Ikeya T, Murata K (1986) J. Chem. Soc., Chem. Commun. 1331Google Scholar
  36. 36.
    The existance of so-called ‘Diels-Alderases’ is a subject of much debate: Sanz-Cervera JF, Glinka T, Williams RM (1993) J. Am. Chem. Soc. 115: 347CrossRefGoogle Scholar
  37. 37.
    Oikawa H, Katayama K, Suzuki Y, Ichihara A (1995) J. Chem. Soc., Chem. Commun. 1321Google Scholar
  38. 38.
    Abe I, Rohmer M, Prestwich GD (1993) Chem. Rev. 93: 2189CrossRefGoogle Scholar
  39. 39.
    Ganem B (1996) Angew. Chem. 108: 1014CrossRefGoogle Scholar
  40. 40.
    Sweers HM, Wong C-H (1986) J. Am. Chem. Soc. 108: 6421CrossRefGoogle Scholar
  41. 41.
    Bashir NB, Phythian SJ, Reason AJ, Roberts SM (1995) J. Chem. Soc., Perkin Trans. 1, 2203CrossRefGoogle Scholar
  42. 42.
    For exceptional D-chiral proteins see: Jung G (1992) Angew. Chem., Int. Ed. Engl. 31: 1457CrossRefGoogle Scholar
  43. 43.
    Sih CJ, Wu S-H (1989) Topics Stereochem. 19: 63CrossRefGoogle Scholar
  44. 44.
    Fischer E (1898) Zeitschr. physiol. Chem. 26: 60CrossRefGoogle Scholar
  45. 45.
    Crossley R (1992) Tetrahedron 48: 8155CrossRefGoogle Scholar
  46. 46.
    De Camp WH (1989) Chirality 1: 2CrossRefGoogle Scholar
  47. 47.
    The resumption of the sale of rac-Thalidomide to third-world countries has been reported in mid-1996!Google Scholar
  48. 48.
    Ariens EJ (1988) Stereospecificity of Bioactive Agents. In: Ariens EJ, van Rensen JJS, Welling W (eds) Stereoselectivity of Pesticides, Elsevier, Amsterdam, pp 39–108Google Scholar
  49. 49.
    Millership JS, Fitzpatrick A (1993) Chirality 5: 573CrossRefGoogle Scholar
  50. 50.
    Borman S (1992) Chem. Eng. News, June 15: 5Google Scholar
  51. 51.
    FDA (1992) Chirality 4: 338CrossRefGoogle Scholar
  52. 52.
    Sheldon RA (1993) Chirotechnology, Marcel Dekker Inc., New YorkGoogle Scholar
  53. 53.
    Morrison JD (ed) (1985) Chiral Catalysis. In: Asymmetric Synthesis, volume 5, Academic Press, LondonGoogle Scholar
  54. 54.
    Hanessian S (1983) Total Synthesis of Natural Products: the ‘Chiron’ Approach, Pergamon Press, OxfordGoogle Scholar
  55. 55.
    Scott JW (1984) Readily Available Chiral Carbon Fragments and their Use in Synthesis. In: Morrison JD, Scott JW (eds) Asymmetric Synthesis, Academic Press, New York, volume 4, pp 1–226Google Scholar
  56. 56.
    Margolin AL (1993) Enzyme Microb. Technol. 15: 266CrossRefGoogle Scholar
  57. 57.
    Phillips, RS (1996) Trends Biotechnol. 14: 13CrossRefGoogle Scholar
  58. 58.
    Schuster M, Aaviksaar A, Jakubke H-D (1990) Tetrahedron 46: 8093CrossRefGoogle Scholar
  59. 59.
    Yeh Y, Feeney (1996) Chem. Rev. 96: 601CrossRefGoogle Scholar
  60. 60.
    Klibanov AM (1990) Acc. Chem. Res. 23: 114CrossRefGoogle Scholar
  61. 61.
    Anfinsen CB (1973) Science 181: 223CrossRefGoogle Scholar
  62. 62.
    Cooke R, Kuntz ID (1974) Ann. Rev. Biophys. Bioeng. 3: 95CrossRefGoogle Scholar
  63. 63.
    Ahern TJ, Klibanov AM (1985) Science 228: 1280CrossRefGoogle Scholar
  64. 64.
    Mozhaev VV, Martinek K (1984) Enzyme Microb. Technol. 6: 50CrossRefGoogle Scholar
  65. 65.
    Jencks WP (1969) Catalysis in Chemistry and Enzymology, McGraw-Hill, New YorkGoogle Scholar
  66. 66.
    Fersht A (1985) Enzyme Structure and Mechanism, 2nd edition, Freeman, New YorkGoogle Scholar
  67. 67.
    Walsh C (ed) (1979) Enzymatic Reaction Mechanism, Freeman, San FranciscoGoogle Scholar
  68. 68.
    Fischer E (1894) Ber. dtsch. chem. Ges. 27: 2985CrossRefGoogle Scholar
  69. 69.
    Koshland DE, Neet KE (1968) Ann. Rev. Biochem. 37: 359CrossRefGoogle Scholar
  70. 70.
    Dewar MJS (1986) Enzyme 36: 8Google Scholar
  71. 71.
    A ‘record’ of rate acceleration factor of 1014 has been reported. See: Lipscomb WN (1982) Acc. Chem. Res. 15: 232CrossRefGoogle Scholar
  72. 72.
    Warshel A, Aqvist J, Creighton S (1989) Proc. Natl. Acad. Sci. 86: 5820CrossRefGoogle Scholar
  73. 73.
    Johnson LN (1984) Inclusion Compds. 3: 509Google Scholar
  74. 74.
    Ogston AG (1948) Nature 162: 963CrossRefGoogle Scholar
  75. 75.
    The following rationale was adapted from: Jones JB (1976) Biochemical Systems in Organic Chemistry: Concepts, Principles and Opportunities. In: Jones JB, Sih CJ, Perlman D (eds) Applications of Biochemical Systems in Organic Chemistry, part I, Wiley, New York, pp 1–46Google Scholar
  76. 76.
    Eyring H (1935) J. Chem. Phys. 3: 107CrossRefGoogle Scholar
  77. 77.
    Kraut J (1988) Science 242: 533CrossRefGoogle Scholar
  78. 78.
    Wong C-H (1989) Science 244: 1145CrossRefGoogle Scholar
  79. 79.
    The individual reaction rates vA and vB correspond to vA = (kcat / Km)A · [E] · [A] and vB = (kcat / Km)B · [E] · [B], respectively, according to Michaelis-Menten kinetics. vA / vB = E (‘Enantiomeric Ratio’, see Chapter 2.1.1).Google Scholar
  80. 80.
    International Union of Biochemistry and Molecular Biology (1992) Enzyme Nomenclature, Academic Press, New YorkGoogle Scholar
  81. 81.
    Kindel S (1981) Technology 1: 62Google Scholar
  82. 82.
    Whitesides GM, Wong C-H (1983) Aldrichimica Acta 16: 27Google Scholar
  83. 83.
    Crout DHG, Christen M (1989) Biotransformations in Organic Synthesis. In: Scheffold R (ed) Modern Synthetic Methods, volume 5, pp 1-114Google Scholar
  84. 84.
    Simon H, Bader J, Günther H, Neumann S, Thanos J (1985) Angew. Chem., Int. Ed. Engl. 24: 539CrossRefGoogle Scholar
  85. 85.
    A ‘cofactor’ is tightly bound to an enzyme (e. g. FAD), whereas a ‘coenzyme’ can dissociate into the medium (e. g. NADH). In practice, however, this distinction is not always made in a consequent manner.Google Scholar
  86. 86.
    Chaplin MF, Bucke C (1990) Enzyme Technology, Cambridge University Press, New YorkGoogle Scholar
  87. 87.
    Spradlin JE (1989) Tailoring enzymes for food processing, Whitaker JR, Sonnet PE (eds) ACS Symposium Series, vol 389, p 24, J. Am. Chem. Soc., WashingtonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1997

Authors and Affiliations

  • Kurt Faber
    • 1
  1. 1.Institute of Organic ChemistryTechnical University GrazGrazAustria

Personalised recommendations