Advertisement

In Situ Formats

  • Elke Genersch
  • B. J. Heiles
  • R. Neumann
  • C. Simon Herrington
  • Pirkko Heino
  • Veijo Hukkanen
  • N. Arnold
  • M. Bhatt
  • T. Ried
  • J. Wienberg
  • D. C. Ward
  • J. Koch
  • Anton K. Raap
  • Joop Wiegant
  • Peter Lichter
  • Erwin R. Schmidt
  • Anna Starzinski-Powitz
  • Katrin Zimmermann
  • Kenneth J. Hillan
  • Frank BaldinoJr.
  • Elaine Robbins
  • Michael E. Lewis
  • Diethard Tautz
  • Nipam H. Patel
  • Corey S. Goodman
  • Barbara Cohen
  • Stephen M. Cohen
Part of the Springer Laboratory book series (SLM)

Abstract

Soon after the method of in situ hybridization (ISH) had been published (Pardue and Gall, 1969), reports appeared showing that it could also be used with great success in the study of virus-infected systems (Orth et al., 1970; Geukens and May, 1974). Now it was possible to study the biology of viruses and the mechanisms of viral infections in detail and to both improve diagnosis and form the basis of prognosis of viral diseases.

Keywords

Human Papilloma Virus Drosophila Embryo Cytogenet Cell Standard Saline Citrate Rubber Cement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum HE, Haase AT, Harris JD, Walker D, Vyas G (1984) Asymmetric replication of hepatitis B virus DNA in human liver: demonstration of cytoplasmic minus-strand DNA by blot analysis and in situ hybridization. Virology 139: 87–96PubMedCrossRefGoogle Scholar
  2. Eagle H (1959) Amino acid metabolism in mammalian cell cultures. Science 130: 432–439PubMedCrossRefGoogle Scholar
  3. Geukens M, May E (1981) Ultrastructural localization of SV 40 viral DNA in cells, during lytic infection, by in situ molecular hybridization. Exp Cell Res 87: 175–185CrossRefGoogle Scholar
  4. Heiles BJ, Genersch E, Kessler C, Neumann R, Eggers HJ (1988) In situ hybridization with digoxigenin labeled DNA of human papilloma viruses (HPV 16/18) in HeLa and SiHa cells. BioTechniques 6: 978–981PubMedGoogle Scholar
  5. Neumann R, Genersch E, Eggers HJ (1987) Detection of adenovirus nucleic sequences in human tonsils in the absence of infectious virus. Virus Res 7: 93–97PubMedCrossRefGoogle Scholar
  6. Neumann R, Eggers HJ, Zippel HH, Remy B, Nelles G, Heiles BJ, Molitor E, Schulz KD (1989) Beitrag zur klinischen Relevanz des Nukleinsäurenachweises der humanen Papillomaviren ( HPV) in Abstrichzellen der Cervix uteri. Geburtsh u Frauenheilk 49: 11–16Google Scholar
  7. Orth G, Jeanteur P, Croissant 0 (1970) Evidence for and localization of vegetative viral DNA replication by autographic detection of RNA-DNA hybrids in sections of tumours induced by Shope papilloma virus. Proc Natl Acad Sci USA 68: 1876–1881Google Scholar
  8. Pardue ML, Gall JG (1969) Chromosomal localization of mouse satellite DNA. Science 168: 1356–1358CrossRefGoogle Scholar
  9. Tourtellotte WW, Verity AN, Schmid P, Martinez S, Shapshak P (1987) Covalent binding of formalin fixed paraffin embedded brain tissue sections to glass slides suitable for in situ hybridization. J Virol Meth 15: 87–95CrossRefGoogle Scholar
  10. Vafai A, Murray RS, Welish M, Devlin M, Gilden DH (1988) Expression of varicella-zoster virus and herpes simplex virus in normal human trigeminal ganglia. Proc Natl Acad Sci USA 85: 2362–2366PubMedCrossRefGoogle Scholar
  11. Cooper K, Herrington CS, Graham AK, Evans MF, McGee JO’D (1991a) In situ HPV genotyping of cervical intraepithelial neoplasia in South African and British patients: evidence for putative HPV integration in vivo. J Clin Pathol 44: 400–405Google Scholar
  12. Cooper K, Herrington CS, Graham AK, Evans MF, McGee JO’D (1991b) In situ evidence for HPV 16, 18, 33 integration in cervical squamous cell cancer in Britain and South Africa. J Clin Pathol 44: 406–409Google Scholar
  13. Cooper K, Herrington CS, Stickland JE, Evans MF, McGee JO’D (1992a) Episomal and integrated HPV in cervical neoplasia demonstrated by nonisotopic in situ hybridization. J Clin Pathol (in press)Google Scholar
  14. Cooper K, Herrington CS, Lo ES, Evans MF, McGee JO’D (1992b) HPV 16 and 18 integration in cervical adenocarcinoma. J Clin Pathol (in press)Google Scholar
  15. Herrington CS, Burns J, Graham AK, Evans MF, McGee JO’D (1989a) Interphase cytogenetics using biotin and digoxigenin labeled probes I: relative sensitivity of both reporters for detection of HPV 16 in CaSki cells. J Clin Pathol 42: 592–600Google Scholar
  16. Herrington CS, Burns J, Graham AK, Bhatt B, McGee JO’D (1989b) Interphase cytogenetics using biotin and digoxigenin labeled probes II: simultaneous detection of two nucleic acid species in individual nuclei. J Clin Pathol 42: 601–606Google Scholar
  17. Herrington CS, Burns J, Graham AK, McGee JO’D (1990a) Discrimination of closely homologous HPV types by in situ hybridization: definition and derivation iof Tmts. Histochem J 22: 545–554Google Scholar
  18. Herrington CS, Flannery DMJ, McGee JO’D (1990b) Single and simultaneous nucleic acid detection in archival human biopsies: application of non-isotopic in situ hybridization and the polymerase chain reaction to the analysis of human and viral genes. In: Polak JM and McGee JO’D (eds) In situ hybridization: principles and practice, Oxford University Press, Oxford, pp 187–215Google Scholar
  19. Herrington CS, McGee JO’D (1990c) Interphase cytogenetics. Neurochem Res 4: 467–474Google Scholar
  20. Herrington CS, Graham AK, McGee JO’D (1991) Interphase cytogenetics using biotin and digoxigenin labeled probes: III. Increased sensitivity and flexibility for detecting HPV in cervical biopsy specimens and cell lines. J Clin Pathol 44: 33–38Google Scholar
  21. Herrington CS, de Angelis M, Evans MF, Troncone G, McGee JO’D (1992a) High risk HPV detection in routine cervical smears: a strategy for screening J Clin Pathol 45: 385–390Google Scholar
  22. Herrington CS, Troncone G, McGee JO’D (1992b) Screening for high and low risk HPV types in single routine cervical smears by nonisotopic in situ hybridization ( NISH ). Cytopathology 3: 71–78Google Scholar
  23. Herrington CS, McGee JO’D (1992c) Principles and basic methodology of DNA/RNA detection by in situ hybridization. In: Herrington CS and McGee JO’D (eds) Diagnostic molecular pathology: a practical approach Vol 1, Oxford University Press (in press)Google Scholar
  24. Herrington CS, McGee JO’D (1992d) In situ hybridization in diagnostic cytopathology. In: Herrington CS and McGee JO’D (eds) Diagnostic molecular pathology: A practical approach Vol 1, Oxford University Press (in press)Google Scholar
  25. Troncone G, Herrington CS, Cooper K, de Angelis ML, McGee JO’D (1992) HPV detection in matched cervical smears and biopsies by nonisotopic in situ hybridization. J Clin Pathol 45: 308–313Google Scholar
  26. Allan GM, Todd D, Smyth JA, Mackie DP, Burns J, McNulty MS (1989) In situ hybridization: an optimised detection protocol for a biotinylated DNA probe renders it more sensitive than a comparable 355-labeled probe. J Virol Meth 24: 181–190CrossRefGoogle Scholar
  27. Beckmann AM, Myerson D, Daling JR, Kiviat NB, Fenoglio CM, McDougall JK (1985) Detection and localization of human papillomavirus DNA in human genital condylomas by in situ hybridization with biotinylated probes. J Med Virol 16: 265–273PubMedCrossRefGoogle Scholar
  28. Burns J, Redfern DRM, Esiri MM, McGee JO’D (1986) Human and viral gene detection in routine paraffin embedded tissue by in situ hybridization with biotinylated probes: viral localisation in herpes encephalitis. J Clin Pathol 39: 1066–1073Google Scholar
  29. Burns J, Graham AK, Frank C, Fleming KA, Evans MF, McGee JO’D (1987) Detection of low copy human papilloma virus DNA and mRNA in routine paraffin sections of cervix by nonisotopic in situ hybridization. J Clin Pathol 40: 858–864Google Scholar
  30. Choi YJ (1990) In situ hybridization using a biotinylated DNA probe on formalin-fixed liver biopsies with hepatitis B virus infections: In situ hybridization superior to immunohistochemistry. Mod Pathol 3: 343–347PubMedGoogle Scholar
  31. Cosby SL, McQuaid S, Taylor MJ, Bailey M, Rima BK, Martin SJ, Allen IV (1989) Examination of eight cases of multiple sclerosis and 56 neurological and non-neurological controls for genomic sequences of measles virus, canine distemper virus, simian virus 5 and rubella virus. J Gen Virol 70: 2027–2036PubMedCrossRefGoogle Scholar
  32. Crum CP, Nagai N, Levine RU, Silverstein S (1986) In situ hybridization analysis of HPV 16 DNA sequences in early cervical neoplasia. Am J Pathol 123: 174–182PubMedGoogle Scholar
  33. Furuta Y, Shinohara T, Sano K, Meguro M, Nagashima K (1990) In situ hybridization with digoxigenin-labeled DNA probes for detection of viral genomes. J Clin Pathol 43: 806–809PubMedCrossRefGoogle Scholar
  34. Heino P, Hukkanen V, Arstila P (1989) Detection of human papilloma virus ( HPV) DNA in genital biopsy specimens by in situ hybridization with digoxigenin-labeled probes. J Virol Meth 26: 331–338Google Scholar
  35. Hukkanen V, Heino P, Sears AE, Roizman B (1990) Detection of herpes simplex virus latency-associated RNA in mouse trigeminal ganglia by in situ hybridization using nonradioactive digoxigenin-labeled DNA and RNA probes. Meth Mol Cell Biol 2: 70–81Google Scholar
  36. Konno R, Shikano K, Horiguchi M, Endo A, Chiba H, Yaegashi N, Sato S, Yajima H, Tase T, Yajima A (1990) Detection of human papillomavirus DNA in genital condylomata in women and their male partners by using in situ hybridization with digoxigenin labeled probes. Tohoku J Exp Med 160: 383–390PubMedCrossRefGoogle Scholar
  37. Lewis FA, Griffiths S, Dunnicliff R, Wells M, Dudding N, Bird CC (1987) Sensitive in situ hybridization technique using biotin-streptavidin polyalkaline phosphatase complex. J Clin Pathol 40: 163–166PubMedCrossRefGoogle Scholar
  38. Maples JA (1985) A method for the covalent attachment of cells to glass slides for use in immunohistochemical assays. Am J Clin Pathol 83: 356–363PubMedGoogle Scholar
  39. McQuaid S, Isserte S, Allan GM, Taylor MJ, Allen IV, Cosby SL (1990) Use of immunocytochemistry and biotinylated in situ hybridization for detecting measles virus in central nervous system tissue. J Clin Pathol 43: 329–333PubMedCrossRefGoogle Scholar
  40. Morris RG, Arends MJ, Bishop PE, Sizer K, Duvall E, Bird CC (1990) Sensitivity of digoxigenin and biotin labeled probes for detection of human papillomavirus by in situ hybridization. J Clin Pathol 43: 800–805PubMedCrossRefGoogle Scholar
  41. Murphy JK, Young LS, Bevan IS, Lewis FA, Dockey D, Ironside JW, O’Brien CJ, Wells M (1990) Demonstration of Epstein-Barr virus in primary brain lymphoma by in situ DNA hybridization in paraffin wax embedded tissue. J Clin Pathol 43: 220–223PubMedCrossRefGoogle Scholar
  42. Musiani G, Gentilomi G, Zerbini M, Gibellini D, Gallinella G, Pileri S, Baglioni P, La Placa M (1990) In situ detection of cytomegalovirus DNA in biopsies of AIDS patients using a hybrido-immunocytochemical assay. Histochem 94: 21–25CrossRefGoogle Scholar
  43. Negro F, Berninger M, Chiaberge E, Gugliotti P, Bussolati G, Actis GC, Rizzetto M, Bonino F (1985) Detection of HBV-DNA by in situ hybridization using a biotin-labeled probe. J Med Virol 15: 373–382PubMedCrossRefGoogle Scholar
  44. Permeen AMY, Sam CK, Pathmanathan R, Prasad U, Wolf H (1990) Detection of Epstein-Barr virus DNA in nasopharyngeal carcinoma using a nonradioactive digoxigenin-labeled probe. J Viral Meth 27: 261–268CrossRefGoogle Scholar
  45. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci 83: 2934–2938PubMedCrossRefGoogle Scholar
  46. Syrjänen S, Partanen P, Mäntyjärvi R, Syrjänen K (1988) Sensitivity of in situ hybridization techniques using biotin-and 35S-labeled human papillomavirus ( HPV) DNA probes. J Virol Meth 19: 225–238Google Scholar
  47. Unger ER, Budgeon LR, Myerson D, Brigati DJ (1986) Viral diagnosis by in situ hybridization. Description of a rapid simplified colorimetric method. Am J Surg Pathol 10: 1–8Google Scholar
  48. Ambros PF, Karlic HI (1987) Chromosome insertion of human papillomavirus 18 sequences in HeLa cells detected by nonisotopic in situ hybridization and reflection contrast microscopy. Hum Genet 77: 251–254PubMedCrossRefGoogle Scholar
  49. Baldini A, Ward DC (1991) In situ hybridization of human chromosomes with Alu-PCR products: a simultaneous karyotype for gene mapping studies. Genomics 9: 770–774PubMedCrossRefGoogle Scholar
  50. Boyle AL, Ballard SG, Ward DC (1990) Differential distribution of long and short interspersed elements in the mouse genome: Chromosome karyotyping by fluorescence in situ hybridization. Proc Natl Acad Sci USA 87: 7757–7761Google Scholar
  51. Cherif D, Julier C, Delattre O, Derre J, Lathrop GM, Berger R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: Application to regional mapping of human chromosome 11. Proc Natl Acad Sci USA 87: 6639–6643PubMedCrossRefGoogle Scholar
  52. Collins C, Kuo WL, Segraves R, Pinkel D, Fuscoe J, Gray JW (1991) Construction and characterization of plasmid libraries enriched in sequences from single human chromosomes. Genomics 11: 997–1006PubMedCrossRefGoogle Scholar
  53. Dilla van MA, Deaven LL (1990) Construction of gene libraries for each human chromosomes. Cytometry 11: 208–218PubMedCrossRefGoogle Scholar
  54. Fan YS, Davis LM, Shows TB (1990) Mapping small DNA sequences by fluorescence in situ hybridization directly on banded metaphase chromosomes. Proc Natl Acad Sci USA 87: 6223–6227PubMedCrossRefGoogle Scholar
  55. Klever M, Grond-Ginsbach C, Scherthan H, Schroeder-Kurth T (1991) Chromosomal in situ suppression hybridization after Giemsa banding. Hum Genet 86: 484–486PubMedCrossRefGoogle Scholar
  56. Korenberg JR, Rykowsky MC (1988) Human genome organization: Alu, LINES and molecular structure of metaphase chromosome bands. Cell 53: 391–400Google Scholar
  57. Kuwano A, Ledbetter SA, Dobyns WB, Emanuel BS, Ledbetter DH (1991) Detection of deletions and cryptic translocations in Miller-Dieker syndrome by in situ hybridiza-tion. Am J Hum Genet 49: 707–714PubMedGoogle Scholar
  58. Landegent JE, Jansen in de Wal N, Dirks RW, Baas F, van der Ploeg M (1987) Use of whole cosmid cloned genomic sequences for chromosomal localization by nonradioactive in situ hybridization. Hum Genet 77: 366–370Google Scholar
  59. Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249: 928–932PubMedCrossRefGoogle Scholar
  60. Lemieux N, Dutrillaux B, Viegas-Peqiugnot E (1992) A simple method for simultaneous R- or G-banding and fluorescence in situ hybridization of small single-copy genes. Cytogenet Cell Genet 59: 311–312PubMedCrossRefGoogle Scholar
  61. Lengauer C, Green ED, Cremer T (1992) In situ hybridization of YAC clones after AluPCR amplification. Genomics 13: 826–828PubMedCrossRefGoogle Scholar
  62. Lichter P, Jauch A, Cremer T, Ward DC (1990a) Detection of Down syndrome by in situ hybridization with chromosome 21 specific DNA probes. In: Patterson D (ed) Molecular Genetics of Chromosome 21 and Down Syndrom. Liss, New York, pp 69–78Google Scholar
  63. Lichter P, Tang CC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990b) High resolution mapping of chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69PubMedCrossRefGoogle Scholar
  64. Lichter P, Boyle AL, Cremer T, Ward DC (1991) Analysis of genes and chromosomes by non-isotopic in situ hybridization. Genet Anal Techn Appl 8: 24–35CrossRefGoogle Scholar
  65. Manuelidis L, Ward DC (1984) Chromosomal and nuclear distribution of the Hindlll 1.9-kb human DNA repeat segment. Chromosoma 91: 28–38PubMedCrossRefGoogle Scholar
  66. Manuelidis L, Borden J (1988) Reproducible compartimentalization of individual chromosome domaine in human CNS cells revealed by in situ hybridization and three dimensional reconstruction. Chromosoma 96: 397–410PubMedCrossRefGoogle Scholar
  67. Meltzer PS, Guan X-Y, Burgess A, Trent JM (1992) Rapid generation of region specific probes by chromosome microdissection and their application. Nature Genet 1: 24–28PubMedCrossRefGoogle Scholar
  68. Moyzis RK, Albright KL, Bartholdi MF, Cram LS, Deaven LL, Hildebrand CE, Joste NE, Longmire JL, Meine J, Schwarzacher-Robinson T (1987) Human chromosome specific repetitive DNA sequences: Novel markers for genetic analysis. Chromosoma 95: 375–386Google Scholar
  69. Moyzis RK, Torney DC, Meyne J, Buckingham JW, Wu JR, Burks C, Sirotkin KM, Good WB (1989) The distribution of interspersed repetitive DNA sequence in the human genome. Genomics 4: 273–289PubMedCrossRefGoogle Scholar
  70. Nelson DL, Ledbetter SA, Corbo L, Victoria MF, Ramirez-Solis R, Webster TD, Ledbetter DH, Caskey CT (1989) Alu polymerase chain reaction: A method for rapid isolation of human-specific sequences from complex DNA sources. Proc Natl Acad Sci USA 86: 6686–6690Google Scholar
  71. Raap AK, Nederlof PM, Dirks JW, Wiegant JCAG, Van der Ploeg M (1990) Use of haptenized nucleic acid probes in fluorescent in situ hybridization. In: Harris N, Williams EG (eds) In Situ Hybridization: Application to Developmental Biology and Medicine. Cambridge University Press, Cambridge, pp 33–41CrossRefGoogle Scholar
  72. Ried T, Mahler V, Vogt P, Blonden C, van Ommen GJB, Cremer T, Cremer M (1990) Direct carrier detection by in situ suppression hybridization with cosmid clones for the Duchenne/Becker muscular dystrophy locus. Hum Genet 85: 581–586PubMedCrossRefGoogle Scholar
  73. Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci USA 89: 1388–1392PubMedCrossRefGoogle Scholar
  74. Slim R, Weissenbach J, Nguyen VC, Danglot G, Bernheim A (1991) Relative order determination of four Yp cosmids on metaphase and interphase chromosomes by two-color competitive in situ hybridization. Hum Genet 88: 21–26PubMedCrossRefGoogle Scholar
  75. Smit VTHBM, Wessels JW, Mollevanger P, Schrier PI, Raap AK, Beverstock GC, Cornelisse CJ (1990) Combined GTG-banding and nonradioactive in situ hybridization improves characterization of complex karyotypes. Cytogenet Cell Genet 54: 20–23PubMedCrossRefGoogle Scholar
  76. Takahashi E, Hari T, O’Connell P, Leppert M, White R (1990) R-banding and nonisotopic in situ hybridization: precise localization of the human type II collagen gene (COL2A1). Hum Genet 86: 14–16PubMedCrossRefGoogle Scholar
  77. Tkachuk DC, Westbrook CA, Andreeff M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray J, Pinkel D (1990) Detection of bcr-abl fusion in chronic myelogeneous leukemia by in situ hybridization. Science 250: 559–562PubMedCrossRefGoogle Scholar
  78. Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by two-color fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48: 1–15PubMedGoogle Scholar
  79. Trautmann U, Leuteritz G, Senger G, Claussen U, Ballhausen WG (1991) Detection of APC region-specific signals by nonisotopic chromosomal in situ suppression ( CISS)hybridization using a microdissection library as a probe. Hum Genet 87: 495–497Google Scholar
  80. Tucker JD, Christensen ML, Carrano AV (1988) Simultaneous identification and banding of human chromosome material in somatic cell hybrids. Cytogenet Cell Genet 48: 103–106PubMedCrossRefGoogle Scholar
  81. Vogel W, Autenrieth M, Speit G (1986) Detection of bromodeoxyuridine-incorporation in mammalian chromosomes by a bromodeoxyuridine-antibody. I. Demonstration of replication patterns. Hum Genet 72: 129–132Google Scholar
  82. Ward DC, Lichter P, Boyle A, Baldini A, Menninger J, Ballard SG (1991) Gene mapping by fluorescent in situ hybridization and digital imaging microscopy. In: Lindsten J, Petterson U (eds) Etiology of human diseases at the DNA level. Raven, New York, pp 291–303Google Scholar
  83. Willard HF, Waye JS (1987) Hierachical order in chromosome-specific human alpha satellite DNA. Trends in Genet 3: 192–198CrossRefGoogle Scholar
  84. Wienberg J, Stanyon R, Jauch A, Cremer T (1992) Homologies in human and Macaca fuscata chromosomes revealed by in situ suppression hybridization with human chromosome specific DNA libraries. Chromosoma 101: 265–270PubMedCrossRefGoogle Scholar
  85. Yunis JJ (1976) High resolution mapping of human chromosomes. Science 191: 1268–1270PubMedCrossRefGoogle Scholar
  86. Gosden J, Hanratty D, Starling J, Mitchell A, Porteous D (1991) Oligonucleotide-primed in situ DNA synthesis (PRINS): a method for chromosome mapping, banding, and investigation of sequence organization. Cytogenet Cell Genet 57: 100–104PubMedCrossRefGoogle Scholar
  87. Gosden J, Hanratty D (1992) Comparison of sensitivity of three haptens, in the PRINS (oligonucleotide PRimed IN Situ synthesis) reaction. Cytogenet Cell Genet (in press)Google Scholar
  88. Hindkjær J, Koch J, Mogensen J, Pedersen S, Fischer H, Nygard M, Junker S, Greger-sen N, Kolvraa S, Bolund L (1991) In situ labeling of nucleic acids for gene mapping, diagnostics and functional cytogenetics. Biotech Forum Europe 12:752–756Google Scholar
  89. Koch J, KOlvraa S, Corneliussen M, Gregersen N, Petersen KB, Bolund L (1988) Treat-ment of genomic DNA with T4 DNA ligase improves Southern blot analysis. Nucleic Acids Res 16: 10387PubMedCrossRefGoogle Scholar
  90. Koch J, KOlvraa S, Gregersen N, Bolund L (1989) Oligonucleotide-priming methods for the chromosome-specific labeling of alpha satellite DNA in situ. Chromosoma 98: 259–265PubMedCrossRefGoogle Scholar
  91. Koch J, Hindkjær J, Mogensen J, KOlvraa S, Bolund L (1991) An improved method for chromosom-specific labeling of alpha satellite DNA in situ using denatured double stranded DNA probes as primers in a PRimed IN Situ labeling ( PRINS) procedure. GATA 8: 171–178Google Scholar
  92. Koch J, Mogensen J, Pedersen S, Fischer H, Hindkjær J, KOlvraa S, Bolund L (1992) Fast one step procedure for the detection of nucleic acids in situ by primer induced sequence specific labeling with fluorescein-12-dUTP. Cytogenet Cell Genet 60: 1–3PubMedCrossRefGoogle Scholar
  93. Mitchell A, Jeppesen P (1992) The organization of repetitive DNA sequence on human chromosomes with respect to the kinetochore analyzed using a combination of oligonucleotide primers and CREST anticentromere serum. Chromosoma (in press)Google Scholar
  94. Moens PB, Pearlman RE (1990) In situ DNA sequence mapping with surface-spread mouse pachytene chromosome. Cytogenet Cell Genet 53: 219–220PubMedCrossRefGoogle Scholar
  95. Moens PB, Pearlman RE (1990) Telomere and centromere DNA are associated with the cores of meiotic chromosomes. Chromosoma 100: 8–14PubMedCrossRefGoogle Scholar
  96. Moens PB, Pearlman RE (1991) Visualization of DNA sequences in meiotic chromosomes. Methods in Cell Biology 35: 101–108PubMedCrossRefGoogle Scholar
  97. Mogensen J, Kolvraa S, Hindkjær J, Petersen S, Koch J, Nygard M, Jensen T, Gregersen N, Junker S, Bolund L (1991) Nonradioactive detection of mRNA subspecies in situ by PRimed IN Situ labeling ( PRINS ). Eptl Cell Res 196: 92–98Google Scholar
  98. Winter0 AK, Fredholm M, Thomsen PD (1992) Variable (dGdT)„•(dC-dA)„ sequences in the porcine genome. Genomics 12: 281–288CrossRefGoogle Scholar
  99. Albertson DG (1985) Mapping muscle protein genes by in situ hybridization using biotin-labeled probes. EMBO J 4: 2493–2498PubMedGoogle Scholar
  100. Arnoldus EPJ, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC, Van der Ploeg M, Raap AK (1990) Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet 54: 108–111PubMedCrossRefGoogle Scholar
  101. Arnoldus EPJ, Noordermeer IA, Peters ACB, Voormolen JHC, Bots GTAM, Raap AK, Van der Ploeg M (1991a) Interphase cytogenetics of brain tumors. Genes, Chromosomes and Cancer 3: 101–107Google Scholar
  102. Arnoldus EPJ, Dreef EJ, Noordermeer IA, Verheggen MM, Thierry RF, Peters ACB, Cornelisse CJ, van der Ploeg M, Raap AK (1991) Feasibility of in situ hybridization with chromosome-specific DNA probes to paraffin wax embedded tissues. J Clin Pathol 4.4: 900–904Google Scholar
  103. Brandiff B, Gordon L, Trask B (1991) A new system for high-resolution DNA sequence mapping in interphase pronuclei. Genomics 10: 75–82CrossRefGoogle Scholar
  104. Cherif D, Julier D, Delattre O, Derre J, Lathrop GM, Berger R (1990) Simultaneous localization of cosmids and chromosome R-banding by fluorescence microscopy: application to regional mapping of chromosome 11. Proc Natl Acad Sci USA 87: 6639–6643PubMedCrossRefGoogle Scholar
  105. Collins C, Kuo WL, Segraves R, Fuscoe J, Pinkel D, Gray JW (1991) Construction characterization of plasmid libraries enriched in sequence from single human chromosomes. Genomics 11: 997–1000PubMedCrossRefGoogle Scholar
  106. Cremer T, Lichter P, Borden J, Ward DC, Manuelidis L (1988) Detection of chromosome aberrations in metaphase and interphase tumor cells by in situ hybridization using chromosome specific library probes. Hum Genet 80: 235–246PubMedCrossRefGoogle Scholar
  107. Dauwerse JG, Kievits T, Beverstock GC, Van der Keur D, Smit E, Wessels HW, Hagemeijer A, Pearson PL, Van Ommen GJB, Breuning MH (1990) Rapid detection of chromosome 16 inversion in acute nonlymphocytic leukemia, subtype M4: regional localization of the breakpoint in 16p. Cytogenet Cell Genet 53: 126–128PubMedCrossRefGoogle Scholar
  108. Emmerich P, Jauch A, Hofman MC, Cremer T, Walt H (1989) Interphase cytogenetics in paraffin embedded sections from testicular germ cell tumor xenografts and in corresponding cell cultures. Lab Invest 61: 235–240PubMedGoogle Scholar
  109. Fuscoe JC, Collins CC, Pinkel D, Gray JW (1989) An efficient method for selecting unique sequence clones from DNA libraries and its application to fluorescent staining of human chromosome 21 using in situ hybridization. Genomics 5: 100–109PubMedCrossRefGoogle Scholar
  110. Hopman AHN, Wiegant J, Raap AK, Landegent JE, van der Ploeg M, van Duijn P (1986) Bicolour detection of two target DNAs by nonradioactive in situ hybridization. Histochemistry 85: 1–4PubMedCrossRefGoogle Scholar
  111. Hopman AHN, Moesker O, Smeets AWGB, Pauwels RPE, Vooijs GP, Ramaekers FCS (1991) Numerical chromosome 1, 7, 9 and 11 aberrations in bladder cancer detected by in situ hybridization. Cancer Res 51: 644–651Google Scholar
  112. Hopman AHN, Van Hooren E, Van de Kaa CA, Vooijs GP, Ramaekers FCS (1991) Detection of numerical chromosome aberrations using in situ hybridization in paraffin sections of routinely bladder cancers. Modern Pathol 4: 503–513Google Scholar
  113. James J, Tanke HJ (1991) Fluorescence microscopy; in: Biomedical light microscopy, Kluwer Academic Publ., Dordrecht, the Netherlands; Chapter 3, pp50–66Google Scholar
  114. Kievits T, Dauwerse JG, Wiegant J, Devilee P, Breuning MH, Cornelisse CJ, Van Ommen GJB, Pearson PL (1990) Rapid subchromosomal localization of cosmids by nonradioactive in situ hybridization. Cytogenet Cell Genet 53: 134–136PubMedCrossRefGoogle Scholar
  115. Landegent JE, Jansen in de Wal N, Ommen GJB, Baas F, De Vijlder JJM, Van Duijn P, Van der Ploeg M (1985) Chromosomal localization of a unique gene by nonautoradiographic in situ hybridization. Nature 317: 175–177PubMedCrossRefGoogle Scholar
  116. Landegent JE, Jansen in de Wal, Dirks RW, Baas F, van der Ploeg M (1987) Use of whole cosmid cloned genomic sequence for chromosomal localization by nonradioactive in situ hybridization. Hum Genet 77: 366–370Google Scholar
  117. Lawrence JB, Villnave CA, Singer RH (1988) Interphase chromatin and chromosome gene mapping by fluorescence detection of in situ hybridization reveals the presence and orientation of two closely linked copies of EBV in a human lymphoblastoid cell line. Cell 52: 51–61PubMedCrossRefGoogle Scholar
  118. Lawrence JB, Singer RH, McNeil JA (1990) Interphase and metaphase resolution of different distances within the human dystrophin gene. Science 249: 928–931PubMedCrossRefGoogle Scholar
  119. Lengauer C, Eckelt A, Weith A, Endlich N, Ponelies N, Lichter P, Greulich KO, Cremer T (1991) Painting of defined chromosomal regions by in situ suppression hybridization of libraries from laser-microdissected chromosomes. Cytogenet Cell Genet 56: 27–30PubMedCrossRefGoogle Scholar
  120. Lichter P, Cremer T, Borden J, Manuelidis L, Ward DC (1988a) Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum Genet 80: 224–234PubMedCrossRefGoogle Scholar
  121. Lichter P, Cremer T, Tang CC, Watkins PC, Manuelidis L, Ward DC (1988b) Rapid detection of human chromosome 21 aberrations by in situ hybridization. Proc Natl Acad Sci USA 85: 9664–9668PubMedCrossRefGoogle Scholar
  122. Lichter P Tang CC, Call K, Hermanson G, Evans G, Housman D, Ward DC (1990) High resolution mapping of human chromosome 11 by in situ hybridization with cos-mid probes. Science 247:64–69PubMedCrossRefGoogle Scholar
  123. Lichter P, Boyle AL, Cremer T, Ward DC (1991) Analysis of genes and chromosomes by nonisotopic in situ hybridization. Genet Anal Techn Appl 8: 24–35CrossRefGoogle Scholar
  124. McNeil JA, Johnson CV, Carter KC, Singer RH, Lawrence JB (1991) Localizing DNA and RNA within nuclei and chromosomes by fluorescence in situ hybridization. Genet Anal Techn Appl 8: 41–58CrossRefGoogle Scholar
  125. Nederlof PM, Robinson D, Abuknesha R, Wiegant J, Hopman AHN, Tanke HJ, Raap AK (1989) Three colour fluorescence in situ hybridization for the simultaneous detection of multiple nucleic acid sequences. Cytometry 10: 20–27PubMedCrossRefGoogle Scholar
  126. Nederlof PM, van der Flier S, Wiegant J, Raap AK, Tanke HJ, Ploem JS, Van der Ploeg M (1990) Multiple fluorescence in situ hybridization. Cytometry 11: 126–131PubMedCrossRefGoogle Scholar
  127. Nederlof PM, van der Flier S, Vrolijk J, Tanke HJ, Raap AK (1992) Quantification of in situ hybridization signals by fluorescence digital imaging microscopy. II. Fluorescence ratio measurements of double labeled probes. Cytometry (in press)Google Scholar
  128. Pinkel D, Landegent J, Collins C, Fuscoe J, Segraves R, Lucas J, Gray J (1988) Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translocation of chromosome 4. Proc Natl Acad Sci 85: 9138–9142PubMedCrossRefGoogle Scholar
  129. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative high sensitivity fluorescence hybridization. Proc Natl Acad Sci USA 83: 2934–2938PubMedCrossRefGoogle Scholar
  130. Ploem JS, Tanke HJ (1987) Introduction to fluorescence microscopy. In: RMS Microscopy Handbooks Series No. 10, Oxford Science PublicationsGoogle Scholar
  131. Raap AK, Dirks RW, Jiwa NM, Nederlof PM, Van der Ploeg M (1990a) In situ hybridization with hapten-modified DNA probes. In: Racz P, Haase AT, Gluckman JC (eds) Modern Pathology of AIDS and Other Retroviral Infections, Karger, Basel, pp 17–28Google Scholar
  132. Raap AK, Nederlof PM, Dirks RW, Wiegant JCAG, Van der Ploeg M (1990b) Use of haptenized nucleic acid probes in fluorescent in situ hybridization. In: Harris N, Williams DG (eds) In Situ Hybridization: Application to Developmental Biology and Medicine, Cambridge University Press, Cambridge, pp 33–41CrossRefGoogle Scholar
  133. Ried T, Mahler V, Vogt P, Blonden L, van Ommen GJB, Cremer T, Cremer M (1990) Carrier detection by in situ suppression hybridization with cosmid clones of the DuchenneBecker muscular dystrophy ( DMDBMD)-locus. Hum Genet 85: 581–586Google Scholar
  134. Ried T, Baldini A, Rand T, Ward DC (1992) Simultaneous visualization of seven different DNA probes by in situ hybridization using combinatorial fluorescence and digitial imaging microscopy. Proc Natl Acad Sci USA, in pressGoogle Scholar
  135. Ried T, Lengauer C, Cremer T, Wiegant J, Raap AK, van der Ploeg M, Groitl P, Lipp M (1991) Specific metaphase and interphase detection of the breakpoint region in 8q24 of Burkitt lymphoma cells by triple colour fluorescence in situ hybridization. Genes Chromosomes and Cancer 4: 1–6Google Scholar
  136. Tkatchuk D, Westbrook C, Andreef M, Donlon TA, Cleary ML, Suryanarayan K, Homge M, Redner A, Gray JW, Pinkel D (1990) Detection of BCR-ABL fusion in chronic myeologeneous leukemia by two colour fluorescence in situ hybridization Science 220: 559–562Google Scholar
  137. Trask B, Pinkel D, Van den Engh G (1989) The proximity of DNA sequences in interphase nuclei is correlated to genomic distance and permits ordering of cosmids spanning 250 kilobase pairs. Genomics 5: 710–717PubMedCrossRefGoogle Scholar
  138. Trask BJ, Massa H, Kenwrick S, Gitschier J (1991) Mapping of human chromosome Xq28 by 2-colour fluorescence in situ hybridization of DNA sequences to interphase cell nuclei. Am J Hum Genet 48: 1–15PubMedGoogle Scholar
  139. Wiegant J, Ried Th, Van der Ploeg M, Nederlof PM, Tanke HJ, Raap AK (1991a) In situ hybridization with fluoresceinated DNA. Nucleic Acids Res 19: 3237–3241PubMedCrossRefGoogle Scholar
  140. Wiegant J, Galjart N, Raap AK, d’Azzo A (1991b) The gene encoding human protective protein is on chromosome 20. Genomics 10: 345–349PubMedCrossRefGoogle Scholar
  141. Wiegant J, Wiesmeijer CC, Hoovers J, Schuuring E, d’Azzo A, Vrolijk J, Tanke HJ, Raap AK (1992) Sensitive and multiple in situ hybridization with rhodamine-, fluorescein-and coumarin-labeled DNAs, submittedGoogle Scholar
  142. Willard HF, Waye JS (1987) Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet 3: 192–198CrossRefGoogle Scholar
  143. Bonner ii, Pardue ML (1976) Ecdyson-stimulated RNA synthesis in imaginal discs of Drosophila melanogaster. Assay by in situ hybridization. Chromosoma 58: 87–99Google Scholar
  144. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132: 6–13PubMedCrossRefGoogle Scholar
  145. Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79: 4381–4385PubMedCrossRefGoogle Scholar
  146. Schmidt ER (1988) Exonuclease digestion of chromosomes for in situ hybridization. Nucleic Acids Res 16: 10381PubMedCrossRefGoogle Scholar
  147. Schmidt ER, Keyl HG, Hankeln T (1988) In situ localization of two hemoglobin gene clusters in the chromosomes of 13 species of Chironomus. Chromosoma 96: 353–359CrossRefGoogle Scholar
  148. Singh L, Purdom JF, Jones KW (1977) Effect of denaturing agents on the detectability of specific DNA sequences of various base compositions by in situ hybridization. Chromosoma 60: 377–389PubMedCrossRefGoogle Scholar
  149. Herget T, Goldowitz D, Oelemann W, Starzinski-Powitz A (1988) Description of putative ribosomal RNAs with low abundance, developmental regulation, and the identifier sequence. Exp Cell Res 176: 141–154PubMedCrossRefGoogle Scholar
  150. Pardue ML (1985) In situ hybridization. In: Hames BD, Higgins SJ (eds) Nucleic Acid Hybridization — A Practical Approach, IRL Press, Oxford, England, Chapter 8, pp 179–202Google Scholar
  151. Zimmermann K, Herget T, Salbaum JM, Schubert W, Hilbich C, Multhaup G, Kang J, Lemaire H-G, Beyreuther K, Starzinski-Powitz A (1988) Localization of the putative precursor of Alzheimer’s disease-specific amyloid at nuclear envelopes of adult human muscle. EMBO J 7: 367–372PubMedGoogle Scholar
  152. Cox KH, DeLeon DV, Angerer RC (1984) Detection of mRNAs in sea urchin embryos by in situ hybridization using asymmetric RNA probes. Develop Biol 101: 485–502PubMedCrossRefGoogle Scholar
  153. Morris RG, Arends MJ, Bishop PE, Sizer K, Duvall E, Bird CC (1990) Sensitivity of digoxigenin and biotin labeled probes for detection of human papillomavirus by in situ hybridization. J Clin Path 43: 800–805PubMedCrossRefGoogle Scholar
  154. Wood GS, Warnke R (1981) Suppression of endogenous avidin binding activity in tissues and its relevance to biotin-avidin detection systems. J Histochem Cytochem 29: 1196PubMedCrossRefGoogle Scholar
  155. Baldino F Jr, Chesselet M-F, Lewis ME (1989) High resolution in situ hybridization histochemistry. In: Conn PM (ed) Methods in enzymology: hormone action, Part K, Neuroendocrine peptides Vol 168, Academic Press 761–777CrossRefGoogle Scholar
  156. Baldino F Jr, Deutch AY, Roth RH, Lewis ME (1988) In situ hybridization histochemistry of tyrosine hydroxylase messenger RNA in rat brain. Ann NY Acad Sci 537: 484–487CrossRefGoogle Scholar
  157. Baldino F Jr, Lewis ME (1989) Nonradioactive in situ hybridization histochemistry with digoxigenin-dUTP labeled oligonucleotides. In: Conn PM (ed) Methods in Neuroscience, Academic Press 282–292Google Scholar
  158. Baldino F Jr, Roberts-Lewis JM, Lewis ME (1992) In situ hybridization histochemistry as a tool for the study of brain function. In: Osbourne NN (ed) Current aspects of the neurosciences Vol 4, Macmillan Publishers, in pressGoogle Scholar
  159. Lewis ME, Baldino F Jr (1990) Probes in situ hybridization histochemistry. In: Chesselet MF (ed) In situ hybridization histochemistry. CRC Press 1–21Google Scholar
  160. Lewis ME, Krause RG, Roberts-Lewis JM (1988) Recent developments in the use of synthetic oligonucleotides for in situ hybridization histochemistry. Synapse 2: 308–316PubMedCrossRefGoogle Scholar
  161. Lewis ME, Robbins E, Grega D, Baldino F Jr (1990) Nonradioactive detection of vasopressin and somatostatin mRNA with digoxigenin-labeled oligonucleotide probes. Ann N Y Acad Sci 579: 246–253PubMedCrossRefGoogle Scholar
  162. Lewis ME, Sherman TG, Watson SJ (1985) In situ hybridization histochemistry with synthetic oligonucleotides. Peptides 6 (suppl 2) 75–87PubMedCrossRefGoogle Scholar
  163. Robbins E, Baldino F Jr, Roberts-Lewis JM, Meyer S, Grega DS, Lewis ME (1991) Quantitative nonradioactive in situ hybridization of preproenkephalin mRNA with digoxigenin-labeled cRNA probes. Anat Rec 231: 559–562PubMedCrossRefGoogle Scholar
  164. Springer JE, Robbins E, Gwag BJ, Lewis ME, Baldino F Jr (1991) Nonradioactive detection of nerve growth factor receptor mRNA in the rat brain using in situ hybridization histochemistry. J Histochem Cytochem 39: 231–234PubMedCrossRefGoogle Scholar
  165. Young WS III (1989) Simultaneous use of digoxigenin-and radiolabeled oligodeoxyribonucleotide probes for hybridization histochemistry. Neuropeptides 13: 271–275PubMedCrossRefGoogle Scholar
  166. Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNA in the rat forebrain. Proc Natl Acad Sci 83: 9827–9831PubMedCrossRefGoogle Scholar
  167. Hemmati-Brivanlou A, Frank D, Bolce ME, Brown BD, Sive HL, Harland RM (1990) Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization. Development 110: 325–330PubMedGoogle Scholar
  168. Kurz E, Holstein T, Petri B, Engel J, David C (1991) Mini-collagens in hydra nematocytes. J Cell Bid 115: 1159–1169CrossRefGoogle Scholar
  169. Sommer R, Tautz D (1991) Segmentation gene expression in the house fly Musca domestica. Development 113: 419–430PubMedGoogle Scholar
  170. Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific Rnas in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85PubMedCrossRefGoogle Scholar
  171. Wieschans E, Nusslein-Vollhard C (1986) Looking at embryos. In: Roberts DB (ed) Drosophila — A Practical Approach. IRL Press, Oxford, pp 199–228Google Scholar
  172. Dynlacht BD, Attardi LD, Admon A, Freeman M, Tijian R (1989) Functional analysis of NTF-1, a developmentally regulated Drosophila transcription factor that binds neuronal cis elements. Genes Dev 3: 1677–1688PubMedCrossRefGoogle Scholar
  173. Hortsch M, Patel NH, Bieber AJ, Traquina ZR, Goodman CS (1990) Drosophila neurotactin, a surface glycoprotein with homology to serine esterases, is dynamically expressed during embryogenesis. Development 110: 1327–1340PubMedGoogle Scholar
  174. Nighorn A, Healy MJ, Davis RL (1991) The cyclic AMP phosphodiesterase encoded by the Drosophila dunce gene is concentrated in the mushroom body neuropil. Neuron 6: 455–467PubMedCrossRefGoogle Scholar
  175. Perkins KK, Admon A, Patel NH, Tijian R (1990) The Drosophila fos-related AP-1 protein is a developmentally regulated transcription factor. Genes Dev 4: 822–834PubMedCrossRefGoogle Scholar
  176. Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85PubMedCrossRefGoogle Scholar
  177. Cohen B, Wimmer E, Cohen SM (1991) Early development of the leg and wing primordia in the Drosophila embryo. Mech Devel 33: 229–240CrossRefGoogle Scholar
  178. Cohen SM (1990) Specification of limb development in the Drosophila embryo by positional cues from segmentation genes. Nature 343: 173–177PubMedCrossRefGoogle Scholar
  179. Guesdon J, Ternynck T, Avrameas S (1979) The use of avidin biotin interaction in immunoenzymatic techniques. J Histochem Cytochem 27 (8): 1131–1139PubMedCrossRefGoogle Scholar
  180. Hülskamp M, Tautz D (1991) Gap genes and gradients — the logic behind the gaps. Bio Essays 14, No 6: 261–268Google Scholar
  181. Ingham P, Taylor AM, Nakano Y (1991) Role of the Drosophila patched gene in positional signaling. Nature 353: 184–187PubMedCrossRefGoogle Scholar
  182. Kellermann KA, Mattson DM and Duncan I (1990) Mutations affecting the stability of the fushi tarazu protein of Drosophila. Genes and Dev 4: 1936–1950CrossRefGoogle Scholar
  183. Lawrence PA and Johnston P (1989) Pattern formation in the Drosophila embryo: allocation of cells to parasegments by even-skipped and fushi tarazu. Development 105: 761–767PubMedGoogle Scholar
  184. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84: 9123–9127PubMedCrossRefGoogle Scholar
  185. Phillips RG, Roberts IJH, Ingham PW, Whittle JRS (1990) The Drosophila segment polarity gene patched is involved in a position-signaling mechanism in imaginal discs. Development 110: 105–114PubMedGoogle Scholar
  186. Tautz D and Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific Rnas in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Elke Genersch
  • B. J. Heiles
  • R. Neumann
  • C. Simon Herrington
  • Pirkko Heino
  • Veijo Hukkanen
  • N. Arnold
  • M. Bhatt
  • T. Ried
  • J. Wienberg
  • D. C. Ward
  • J. Koch
  • Anton K. Raap
  • Joop Wiegant
  • Peter Lichter
  • Erwin R. Schmidt
  • Anna Starzinski-Powitz
  • Katrin Zimmermann
  • Kenneth J. Hillan
  • Frank BaldinoJr.
  • Elaine Robbins
  • Michael E. Lewis
  • Diethard Tautz
  • Nipam H. Patel
  • Corey S. Goodman
  • Barbara Cohen
  • Stephen M. Cohen

There are no affiliations available

Personalised recommendations