Overview of Colorimetric, Chemiluminometric, and Fluorimetric Detection Systems

  • H.-J. Guder
  • H.-P. Josel
Part of the Springer Laboratory book series (SLM)

Abstract

A large number of detection systems for biomolecules have been described in the literature; therefore, only a brief overview of the most important nonradioactive methods will be given here. More details can be found in the other chapters of this book or in the cited literature.

Keywords

Glycoside Ruthenium FITC Hydrolase Decan 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott Laboratories (1986) Substrate formulation in 2-amino-2-methyl-l-propanol buffer for alkaline phosphatase assays. European Patent Application EP228663Google Scholar
  2. Altman F (1976) Tetrazolium salts and formazans. Progr Histochem Cytochem 9:1–57CrossRefGoogle Scholar
  3. Beck S, Köster H (1990) Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem 62: 2258–2270PubMedCrossRefGoogle Scholar
  4. Blackburn GF et al. (1991) Electrochemiluminescence detection for developement of immunoassays and DNA probe assays for clinical diagnosis. Clin Chem 37/ 9: 1534–1539Google Scholar
  5. Boehringer Mannheim GmbH (1969) Verfahren und diagnostische Mittel zur Bestimmung von Hydroperoxiden und peroxidatisch wirksamen Substanzen. Deutsche Patentschrift DE1917996C3Google Scholar
  6. Boehringer Mannheim GmbH (1983) Phenolsulfonphthaleinyl-3-D-galactoside, Verfahren zu deren Herstellung sowie deren Verwendung zur Bestimmung der (3-Galactosidase. Europäische Patentschrift EP146866Google Scholar
  7. Boehringer Mannheim GmbH (1984) Glycoside von Resorufin-Derivaten, Verfahren zu deren Herstellung sowie deren Verwendung zur Bestimmung der Aktivität von Glycosidasen. Europäische Patentanmeldung EP156347Google Scholar
  8. Bronstein I, Edwards B, Voyta JC (1989) 1,2-Dioxetanes: novel chemiluminescent enzyme substrates. Applications to immunoassays. J Biolumin Chemilumin 4: 99–111PubMedCrossRefGoogle Scholar
  9. Bronstein I, Kricka LJ (1989) Clinical applications of luminescent assay for enzyme and enzyme labels. L Clin Lab Anal 3: 316–322CrossRefGoogle Scholar
  10. Buonocore V, Sgambati O, De Rosa M, Esposito E, Gambacorta A (1980) A constitutive ß-galactosidase from extreme thermoacidiphile archaebacterium Caldariella acidophila. J Appl Biochem 2: 390–397Google Scholar
  11. Cammann K (1991) Chemo-und Biosensoren, Grundlagen und Anwendungen. Angew Chem 103: 519–541CrossRefGoogle Scholar
  12. Ci Y-X, Chen L, Wei C (1989) Fluorescence reaction of the system mimetic peroxidase (Mn-T(4-TAP)P)-homovanillic acid-hydrogen peroxide. Fresenius Z Anal Chem 334: 34–36CrossRefGoogle Scholar
  13. Coutlee F, Viscidi R, Yolken R (1989) Comparison of colorimetric, fluorescent and enzymatic amplification substrate systems in an enzyme immunoassay for detection of DNA-RNA hybrids. J Clin Mikrobiol 27: 1002–1007Google Scholar
  14. Czerkinsky C et al. (1988) A novel two colour ELISPOT assay. J Immunol Meth 115: 31–37CrossRefGoogle Scholar
  15. De Boever J, Kohen F, Leyseele D, Vandekerckhofe D (1990) Isoluminol as a marker in direct chemiluminescence immunoassays for steroid hormones. J Biolum Chemilum 5: 5–10CrossRefGoogle Scholar
  16. Diamandis EP (1988) Immunoassays with time-resolved fluorescence spectroscopy: principles and applications. Clin Biochem 21: 139–150PubMedGoogle Scholar
  17. Elias J (1980) A rapid, sensitive myeloperoxidase stain using 4-chloro-l-naphthol. Am J Clin Pathol 73: 797–799PubMedGoogle Scholar
  18. Garen A, Levinthal C (1960) A fine structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. Biochim Biophys Acta 38: 470–483CrossRefGoogle Scholar
  19. Guilbault G (1964) 4-Methoxy-alpha-naphthol as a spectrophotometric reagent substrate for measuring peroxidatic activity. Anal Chem 36:2492–2496Google Scholar
  20. Guilbault GG, Brignac P, Zimmer M (1966) Homovanillic acid as fluorimetric substrate for oxidative enzymes. Anal Chem 40: 190–199CrossRefGoogle Scholar
  21. Haugland EP (1982) Covalent fluorescent probes in excited states of biopolymers. In: Steiner RF (ed) Plenum Press, New York, LondonGoogle Scholar
  22. Hauber R, Geiger R (1987) A new, very sensitive, biochemiluminescence-enhanced detection system for protein blotting. J Clin Chem Clin Biochem 25: 511–514PubMedGoogle Scholar
  23. Hemmilä I, Dakubu S, Mukkala V-M, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137: 335–343PubMedCrossRefGoogle Scholar
  24. Herrmann R, Josel H-P, Wörner W, Fetterhoff Tl (1989) Conjugation of proteins to various fluorescence labels. 19th FEBS meeting, Rome, Abstract Nr FR 511Google Scholar
  25. Kronick MN, Grossman PD (1983) Immunoassay technique with fluorescent phycobiliprotein conjugates. Clin Chem 29 /9: 1582–1586PubMedGoogle Scholar
  26. Kyowa Medex Co. Ltd. (1986) Method of assaying a biocomponent. European Patent Application EP167340Google Scholar
  27. Lojda Z, Slaby J, Kraml J, Kolinska J (1973) Synthetic substrates in the histochemical demonstration of intestinal disaccharidases. Histochemie 34: 361–369PubMedCrossRefGoogle Scholar
  28. Merenyi G, Lind J, Eriksen TE (1990) Luminol chemiluminescence: chemistry, excitation, emitter. J Biolum Chemilum 5: 53–56CrossRefGoogle Scholar
  29. Nugel E, Porstmann B, Porstmann T, Evers U, Schmechta H (1986) Vergleichende Untersuchungen zur Peroxidase, alkalische Phosphatase und ß-Galactosidase als Markerenzyme. Z Med Lab Diagn 27: 145–153PubMedGoogle Scholar
  30. Poor M, Santa P, Sittampalam S (1988) Visualization of multiple protein bands on the same nitrocellulose membrane by double immunoblotting. Anal Biochem 175: 191–195PubMedCrossRefGoogle Scholar
  31. Porstmann B, Porstmann T (1988) Chromogenic substrates for enzyme immunoassay. In: Ngo T (ed) Nonisotopic immunoassays, Plenum Press, New York, LondonGoogle Scholar
  32. Porstmann B, Evers U, Nugel E, Schmechta H (1991) Tetramethylbenzidin — ein chromogenes Substrat für Peroxidase im Enzymimmunoassay. Z Med Lab Diagn 32: 3–8PubMedGoogle Scholar
  33. Sauer M, Foulkes J, O’Neil P (1989) A comparison of alkaline phosphatase, ß-galactosidase and peroxidase used as labels for progesterone determination in milk by heterologous microtitre plate enzymeimmunoassay. J Steroid Biochem 33: 423–431PubMedCrossRefGoogle Scholar
  34. Schaap AP, Sandison MD, Handley RS (1987) Chemical and enzymatic triggering of 1,2dioxetanes. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate substituted dioxetane. Anal Biochem 192: 222–231Google Scholar
  35. Technicon Instruments Corporation (1987) Substrates for (3-galactosidase. Eur Pat Appl EP292169Google Scholar
  36. Thorpe GHG, Kricka LJ, Moseley SB, Whitehead TP (1985) Phenols as enhancers of the chemiluminescent horseradish peroxidase-luminol-hydrogen peroxide reaction. Clin Chem 31: 1335–1341PubMedGoogle Scholar
  37. Vaidya HC et al. (1988) Quantification of lactate dehydrogenase-1 in serum with use of an M-subunit-specific monoclonal antibody. Clin Chem 34: 2410–2414PubMedGoogle Scholar
  38. Weeks I, Sturgess M, Brown RB, Woodhead JS (1986) Immunoassays using acridinium esters. Meth Enzymol 133: 366–406PubMedCrossRefGoogle Scholar
  39. West S, Schröder J, Kunz W (1990) A multiple-staining procedure for the detection of different DNA fragments on a single blot. Anal Biochem 190: 254–258PubMedCrossRefGoogle Scholar
  40. White JC, Stryer L (1987) Photostability studies of phycobiliprotein fluorescent labels. Anal Biochem 161: 442–452PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • H.-J. Guder
  • H.-P. Josel

There are no affiliations available

Personalised recommendations