Skip to main content

Part of the book series: Springer Laboratory ((SLM))

Abstract

Since their advent, the use of synthetic nucleic acid probes for detection of nucleotide sequences has offered specificity and handling advantages over cloned DNA probes. Highly specific oligonucleotides can distinguish between sequences with as few as one nucleotide difference (Wallace et al., 1979). Automated chemistry has enabled the routine production of high purity oligonucleotides using phosphoamidite chemistry. The development of SNAP (synthetic nucleid acid probe) technology has provided a safe and convenient method for labeling these oligomer probes and detecting their targets (Ruth et al., 1985). The SNAP system uses synthetic oligonucleotides which have been covalently coupled to a nonisotopic reporter molecule, most typically alkaline phosphatase (AP). Addition of AP substrates to these conjugated oligomers, AP probes, results in the enzymatic production of a detectable signal (Jablonski et al., 1986; Ruth and Jablonski, 1987). Similar to unconjugated oligomers, AP-labeled probes show the same high degree of specificity achievable with radioactively labeled oligomer probes (Podell et al., 1991). Unlike isotopically labeled probes, these enzyme-labeled probes are more sensitive and show remarkable stability.

SNAP is a registered trademark of Syngene, Inc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albretsen C, Kalland K-H, Haukanes B-I, Hâvarstein L-S, Kleppe K (1990) Applications of magnetic beads with covalently attached oligonucleotides in hybridization: isolation and detection of specific measles virus mRNA from crude cell lysate. Anal Biochem 189: 40–50

    Article  PubMed  CAS  Google Scholar 

  • Baird M, Balazs I, Giusti A, Miyazaki L, Nicholas L, Wexler K, Kanter E, Glassberg J, Allen F, Rubinstein P, Sussman L (1986) Allele frequency distribution of two highly polymorphic DNA sequences in three ethnic groups and its application to the determination of paternity. Am J Hum Genet 39: 489–501

    PubMed  CAS  Google Scholar 

  • Balazs I, Baird M, Clyne M, Meade E (1989) Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet 44: 182–190

    PubMed  CAS  Google Scholar 

  • Baldino FB, Ruth JL, Davis LG (1989) Nonradioactive detection of vasopressin mRNA with in situ hybridization histochemistry. Exp Neuro 104: 200–207

    Article  CAS  Google Scholar 

  • Huang CH, Jungkind DL (1991) Nonradioactive DNA probe for the rapid identification of Mycobacterium avium complex from clinical specimens. Mol Cell Probes 5: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Jablonski E, Moomaw EW, Tullis RH, Ruth JL (1986) Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res 14: 6115–6128

    Article  PubMed  CAS  Google Scholar 

  • Keller GH, Huang D-P, Shih JW-K, Manak MM (1990) Detection of hepatitis B virus DNA in serum by polymerase chain reaction amplification and microtiter sandwich hybridization. J Clin Micro 28: 1411–1416

    CAS  Google Scholar 

  • Kiyama H, Emson PC (1990) Distribution of somatostatin messenger RNA in the rat nervous system as visualized by a novel nonradioactive in situ hybridization histochemistry procedure. Neuroscience 38: 223–244

    Article  PubMed  CAS  Google Scholar 

  • Kiyama H, Emson PC, Ruth JL (1990) Distribution of tyrosine hydroxylase mRNA in the rat central nervous system visualized by alkaline phosphatase in situ hybvridization histochemistry. Euro J Neuro 2: 512–524

    Article  Google Scholar 

  • Lim SD, Todd J, Lopez J, Ford E, Janda JM (1991) Genotypic identification of pathogenic Mycobacterium species by using a nonradioactive oligonucleotide probe. J Clin Micro, 29: 1276–1278

    CAS  Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat ( VNTR) markers for human gene mapping. Science 235: 1616–1622

    Google Scholar 

  • Nicholls PJ, Malcolm ADB (1989) Nucleic acid analysis by sandwich hybridization. J Clin Lab Anal 3: 122–135

    Article  PubMed  CAS  Google Scholar 

  • Odelberg SJ, Plaetke R, Eldridge JR, Ballard L, O’Connell P, Nakamura Y, Leppert M, Lalouel J-M, White R (1989) Characterization of eight VNTR loci by agarose gel electrophoresis. Genomics 5: 915–924

    Article  PubMed  CAS  Google Scholar 

  • Ou C-Y, Kwok S, Michell SW, Mack DH, Sninsky JJ, Krebs JW, Feorino P, Warfield D, Schochetman G (1988) DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239: 295–297

    Article  PubMed  CAS  Google Scholar 

  • Podell S, Maske W, Ibanez E, Jablonski E (1991) Comparison of solution hybridization efficiencies using alkaline phosphatase-labeled and 3213-labeled oligodeoxynucleotide probes. Mol Cell Probes, 5: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Ranki M, Palva A, Virtanen M, Laaksonen M, Söderlund H (1983) Sandwich hybridization as a convenient method for the detection of nucleic acids in crude samples. Gene 21: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Ruth JL, Jablonski E (1987) Synthesis and hybridization characteristics of oligodeoxynucleotide-alkaline phosphatase conjugates, Nucleosides and Nucleotides 6: 541–542

    Article  CAS  Google Scholar 

  • Ruth JR, Morgan C, Pasko A (1985) Linker arm nucleotide analogs useful in oligonucleotide synthesis, DNA 4: 93

    Google Scholar 

  • Sninsky JJ, Kwok S (1990) Detection of human immunodeficiency viruses by the polymerase chain reaction. Arch Pathol Lab Med 114: 259–262

    PubMed  CAS  Google Scholar 

  • Wallace RB, Shaffer J, Murphy RF, Bonner J, Hirose T, Itakura K (1979) Hybridization of synthetic oligodeoxyribonucleotides to (I)x 174 DNA: the effect of a single base pair mismatch. Nucleic Acids Res 6: 3543–3557

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marich, J.E., Ruth, J.L. (1992). The SNAP System. In: Kessler, C. (eds) Nonradioactive Labeling and Detection of Biomolecules. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00144-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00144-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00146-2

  • Online ISBN: 978-3-662-00144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics