Skip to main content

General Aspects of Nonradioactive Labeling and Detection

  • Chapter
Book cover Nonradioactive Labeling and Detection of Biomolecules

Part of the book series: Springer Laboratory ((SLM))

Abstract

In the course of the past decade, increasing attempts to detect basic biological substances such as nucleic acids, proteins, and glycans by nonradioactive bioanalytical indicator systems have been made. In addition to special techniques such as nucleic acid detection via ethidium bromide intercalation (Bauer and Vinograd, 1968; Nathans and Smith, 1975; Ausubel et al., 1987), protein visualization by Coomassie staining (Bennett and Scott, 1971; Zehr et al., 1989), or the detection of glycans by periodate-Schiff staining (Kapitany and Zebrowski, 1973), an increasing number of indicator systems are being developed which are characterized by a higher specificity and sensitivity. Analytical systems which permit the analysis of different biomolecules by uniform detection principles are of particular interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl A (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Bauer W, Vinograd J (1968) Interaction of closed circular DNA with intercalative dyes. I. Superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol 33: 141–171

    Article  PubMed  CAS  Google Scholar 

  • Bayer EA, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Meth Biochem Anal 26: 1–45

    Article  CAS  Google Scholar 

  • Bennett J, Scott KJ (1971) Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brilliant blue. Anal Biochem 43: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Kapitany RA, Zebrowski EJ (1973) A high resolution PAS stain for polyacrylamide gel electrophoresis. Anal Biochem 56: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Nathans D, Smith HO (1975) Restriction endonucleases in the analysis and restructuring of DNA molecules. Ann Rev Biochem 44: 273–293

    Article  PubMed  CAS  Google Scholar 

  • Zehr BD, Savin TJ, Hall RE (1989) A one-step low background Coomassie staining procedure for polyacrylamide gels. Anal Biochem 182: 157–159

    Article  PubMed  CAS  Google Scholar 

  • Briggs J (1987) Biosensors emerge from the laboratory. Nature 329: 565–566

    Article  Google Scholar 

  • Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradioactive fluorescence resonance energy transfer. Proc Natl Acad Sci USA 85: 8790–8794

    Article  PubMed  CAS  Google Scholar 

  • Collins M, Fritsch EF, Ellwood MS, Diamond SE, Williams JI, Brewen JG (1988)

    Google Scholar 

  • A novel diagnostic method based on strand displacement. Mol Cell Probes 2:15–30

    Google Scholar 

  • Coutlee F, Viscidi P, Yolken H (1989) Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection of

    Google Scholar 

  • DNA-RNA hybrids. J Clin Microbiol 27:1002–1007

    Google Scholar 

  • Downs MEA, Kobayashi S, Karube I (1987) Review. New DNA technology and the DNA biosensor. Anal Lett 20: 1897–1927

    Google Scholar 

  • Hafemann DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240: 1182–1185

    Article  Google Scholar 

  • Henderson DR, Friedmann SB, Harris JD, Manning WB, Zoccoli MA (1986) CEDIA, a new homogeneous immunoassay system. Clin Chem 32: 1637–1641

    PubMed  CAS  Google Scholar 

  • Hicks JM (1984) Fluorescence immunoassay. Hum Pathol 15: 112–116

    Article  PubMed  CAS  Google Scholar 

  • Ikariyama Y, Shimada N, Yukiashi T, Aizawa M, Yamauchi S (1989) Microbiosensing device for real time determination. Bull Chem Soc Japan 62: 1864–1868

    Article  CAS  Google Scholar 

  • Jungell-Nortamo A, Syvänen AC, Luoma P, Söderlund H (1988) Nucleic acid sandwich hybridization: enhanced reaction rate with magnetic microparticles as carriers. Mol Cell Probes 2: 281–288

    Article  PubMed  CAS  Google Scholar 

  • Kessler C (1991) The digoxigenin:anti-digoxigenin (DIG) technology — a survey on the concept and realization of a novel bioanalytical indicator system. Mol Cell Probes 5: 161–205

    Article  PubMed  CAS  Google Scholar 

  • Keller GH, Manak MM (1989) DNA probes. Stockton Press, New York

    Google Scholar 

  • Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Meth Enzymol 155: 397–415

    Google Scholar 

  • Linke R, Köppers R (1988) Nicht-isotopische Immunoassays — ein Überblick. In: Borsdorf R, Fresenius W, Günzler H, Huber W, Kelker H, Luderwald I, Tölg G, Wisser H (eds) Analytiker Taschenbuch, Springer Verlag, Berlin/Heidelberg, pp 127–177

    Google Scholar 

  • Maitland NJ, Cox MF, Lynas C, Prime S, Crane I, Scully C (1987) Nucleic acid probes in the study of latent viral disease. J Oral Pathol 16: 199–211

    Article  PubMed  CAS  Google Scholar 

  • McKnabb RR, Tedesco JL (1989) Measuring contaminating DNA in bioreactor derived monoclonals. BioTechnol 7: 343–347

    Article  CAS  Google Scholar 

  • Schray KJ, Artz PG, Hevey RC (1988) Determination of avidin and biotin by fluorescence polarization. Anal Chem 60: 853–855

    Article  PubMed  CAS  Google Scholar 

  • Urdea MS, Warner BD, Running JA, Stempien M, Clyne J, Horn T (1988) A comparison of nonradioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme-labeled synthetic oligodeoxyribonucleotide probes. Nucleic Acids Res 16: 4937–4956

    Article  PubMed  CAS  Google Scholar 

  • Vary CPH (1987) A homogeneous nucleic acid hybridization assay based on strand displacement. Nucleic Acids Res 15: 6883–6897

    Article  PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1987) Labeling glycoconjugates with hydrazide reagents. Meth Enzymol 138: 429–442

    Article  PubMed  CAS  Google Scholar 

  • Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attaching nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245

    Article  PubMed  CAS  Google Scholar 

  • Albarella JP, Anderson LH (1985) Detection of polynucleotide sequence in medium and when single stranded nucleic acids are present by using probe, intercalator and antibody. Eur Pat Appl 0146815

    Google Scholar 

  • Albarella JP, Anderson LH, Carrico RJ (1985) Detection of polynucleotide sequence in sample of nucleic acids by using nucleic acid probe and contact of duplexes with immobilized antibody. Eur Pat Appl 0146039

    Google Scholar 

  • Baumann JG, Wiegant J, van Duijin P (1983) The development, using poly(Hg-U) in a model system, of a new method to visualize cytochemical hybridization in fluorescence microscopy. J Histochem Cytochem 31: 571–578

    Article  Google Scholar 

  • Bayer EA, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Meth Biochem Anal 26: 1–45

    Article  CAS  Google Scholar 

  • Bayer EA, Wilchek M (1990) Avidin-biotin technology. Methods in Enzymology, Vol 184. Academic Press, San Diego

    Google Scholar 

  • Binder M (1987) In situ hybridization at the electron microscope level. Scanning Microsc 1: 331–338

    PubMed  CAS  Google Scholar 

  • Bulow S, Link G (1986) A general and sensitive method for staining DNA and RNA blots. Nucleic Acids Res 14: 3973

    Article  PubMed  CAS  Google Scholar 

  • Coutlee F, Bobo L, Mayur K, Yolken RH, Viscidi RP (1989a) Immunodetection of DNA with biotinylated RNA probes: a study of reactivity of a monoclonal antibody to DNA-RNA hybrids. Anal Biochem 181: 96–105

    Article  PubMed  CAS  Google Scholar 

  • Coutlee F, Viscidi P, Yolken RH (1989b) Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection of DNA-RNA hybrids. J Clin Microbiol 27: 1002–1007

    PubMed  CAS  Google Scholar 

  • Coutlee F, Yolken RH, Viscidi RP (1989c) Nonisotopic detection of RNA in an enzyme immunoassay using a monoclonal antibody against DNA-RNA hybrids. Anal Biochem 181: 153–162

    Article  PubMed  CAS  Google Scholar 

  • Cremers AF, Jansen in de Wal N, Wiegant J, Dirks RW, Weisbeek P, Van der Ploeg M, Landegent JE (1987) Nonradioactive in situ hybridization. A comparison of several immunocytochemical detection systems using reflection-contrast and electron microscopy. Histochem 86: 609–615

    Google Scholar 

  • Czichos J, Koehler M, Reckmann B, Renz M (1989) Protein-DNA conjugates produced by UV irradiation and their use as probes for hybridization. Nucleic Acids Res 17: 1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Dattagupta N, Knowles W, Marchesi VT, Crothers DM (1984) Nucleic acid-protein conjugate. Eur Pat Appl 0154884

    Google Scholar 

  • Dattagupta N, Rae PMM, Knowles WJ, Crothers DM (1985) Nucleic acid detection probe comprises hybridisable single stranded part of nucleic acid connected to nonhybridisable nucleic acid with specific recognition site. Eur Pat Appl 0147665

    Google Scholar 

  • Dattagupta N, Rae PMM, Knowles WJ, Crothers DM (1988) Use of nonhybridizable nucleic acids for the detection of nucleic acid hybridization. US 4724202

    Google Scholar 

  • Gillam IC (1987) Nonradioactive probes for specific DNA sequences. Trends Biotech 5: 332–334

    Article  CAS  Google Scholar 

  • Herzberg M (1984) Molecular genetic probe, assay technique, and a kit using this molecular genetic probe. Eur Pat Appl 0128018

    Google Scholar 

  • Höltke H-J, Kessler C (1990) Nonradioactive labeling of RNA transcripts in vitro with the hapten digoxigenin ( DIG); hybridization and ELISA-based detection. Nucleic Acids Res 18: 5843–5851

    Google Scholar 

  • Höltke H-J, Seibl R, Burg J, Mühlegger K, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: II. Optimization of the digoxigenin system. Mol Gen Hoppe-Seyler 371: 929–938

    Google Scholar 

  • Hopmann AHN, Wiegant J, Tesser GI, Van Duijn P (1986a) A nonradioactive in situ hybridization method based on mercurated nucleic acid probes and sulfhydryl-hapten ligands. Nucleic Acids Res 14: 6471–6488

    Article  Google Scholar 

  • Hopman AHN, Wiegant J, van Duijn P (1986b) A new hybridocytochemical method based on mercurated nucleic acide probes and sulhydryl-hapten ligands. I. Stability of the mercurysulfhydryl bond and influence of the ligand structure on immunochemical detection of the hapten. Histochem 84: 169–178

    Google Scholar 

  • Hyman HC, Yogev D, Razin S (1987) DNA probes for detection and identification of Mycoplasma pneumoniaea and Mycoplasma genitalium. J Clin Microbiol 25: 726–728

    PubMed  CAS  Google Scholar 

  • Jablonski E, Moomaw EW, Tullis RH, Ruth JL (1986) Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res 14: 6115–6128

    Article  PubMed  CAS  Google Scholar 

  • Keller GH, Cumming CU, Huang DP, Manak MM, Ting R (1988) A chemical method for introducing haptens onto DNA probes. Anal Biochem 170: 441–450

    Article  PubMed  CAS  Google Scholar 

  • Keller GH, Huang DP, Manak MM (1989) Labeling of DNA probes with a photoactivat-able hapten. Anal Biochem 177: 392–395

    Article  PubMed  CAS  Google Scholar 

  • Kessler C (1991) The digoxigenin:anti-digoxigenin (DIG) technology — a survey on the concept and realization of a novel bioanalytical indicator system. Mol Cell Probes 5: 161–205

    Article  PubMed  CAS  Google Scholar 

  • Kessler C (1992) Nonradioactive nucleic acid labeling methods. In: Kricka LJ (ed) Nonisotopic DNA probe techniques, Academic Press, pp 29–92

    Google Scholar 

  • Kessler C, Höltke H-J, Seibl R, Burg J, Mühlegger K (1990) Nonradioactive labeling and detection of nucleic acids: I. A novel DNA labeling and detection system based on digoxigenin:antidigoxigenin ELISA principle (digoxigenin system). Mol Gen HoppeSeyler 371: 917–927

    CAS  Google Scholar 

  • Kumar A, Tchen P, Roullet F, Cohen J (1988) Nonradioactive labeling of synthetic oligonucleotide probes with terminal deoxynucleotidyl transferase. Anal Biochem 169: 376–382

    Article  PubMed  CAS  Google Scholar 

  • Landegent JE, Jansen in de Wal N, Baan RA, Hoeijmakers JH, Van der Ploeg M (1984) 2-Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences. Exp Cell Res 153: 61–72

    Google Scholar 

  • Landegent JE, Jansen in de Wal N, Ploem JS, Van der Ploeg M (1985) Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy. J Histochem Cytochem 33: 1241–1246

    CAS  Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 6633–6637

    Article  PubMed  CAS  Google Scholar 

  • Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79: 4381–4385

    Article  PubMed  CAS  Google Scholar 

  • Lichter P, Tang CJC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cos-mid clones. Science 247: 64–69

    Article  PubMed  CAS  Google Scholar 

  • McKnabb S, Rupp R, Tedesco JL (1989) Measuring contamination DNA in bioreactorderived monoclonals. Bio/Technology 7: 343–347

    Article  CAS  Google Scholar 

  • Mühlegger K, Huber E, von der Eltz H, Rüger R, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodigoxigenin. Mol Gen HoppeSeyler 371: 939–951

    Google Scholar 

  • Paau A, Platt SG, Sequeiro L (1983) Assay method and probe for polynucleotide sequence. UK Pat Appl 2125964

    Google Scholar 

  • Parsons G (1988) Development of DNA probe-based commercial assay. J Clin Immunoassay 11: 152–160

    Google Scholar 

  • Pezzella M, Pezzella F, Galli C, Macchi B, Verani P, Sorice F, Baroni CD (1987) In situ hybridization of human immunodeficiency virus ( HTLV-III) in cryostat sections of lymph nodes of lymphadenopathy syndrome patients. J Med Virol 22: 135–142

    Google Scholar 

  • Pollard-Knight D, Read CA, Downes MJ, Howard LA, Leadbetter MR, Pheby SA, McNaughton E, Syms A, Brady MAW (1990) Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with horseradish peroxidase. Anal Biochem 185: 84–89

    Article  PubMed  CAS  Google Scholar 

  • Porstmann T, Ternynck T, Avrameas S (1985) Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 82: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Rabin BR, Taylorson CJ, Hollaway MR (1985) Assay method using enzyme fragments as labels and new enzyme substrates producing coenzymes or prosthetic groups. Eur Pat App! 0156641

    Google Scholar 

  • Rashtchian A, Elredge J, Ottaviani M, Abbott M, Mock G, Lovern D, Klinger J, Parsons G (1987) Immunological capture of nucleic acid hybrids and application to nonradioactive DNA probe assay. Clin Chem 33: 1526–1530

    PubMed  CAS  Google Scholar 

  • Reckmann B, Rieke E (1987) Verfahren and Mittel zur Bestimmung von Nucleinsäuren. Eur Pat App! 0286958

    Google Scholar 

  • Renz M (1983) Polynucleotide-histone H1 complexes as probes for blot hybridization. EMBO J 2: 817–822

    PubMed  CAS  Google Scholar 

  • Sakamoto H, Traincard F, Vo-Quang T, Ternynck T, Guesdon JL, Avrameas S (1987) 5-Bromodeoxyuridine in vivo labeling of M13 DNA, and its use as a nonradioactive probe for hybridization experiments. Mol Cell Probes 1: 109–120

    Google Scholar 

  • Schmitz GG, Walter T, Kessler C (1991) Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin ( DIG) by tailing with terminal transferase. Anal Biochem 192: 222–231

    Google Scholar 

  • Seibl R, Höltke H-J, Rüger R, Meindl A, Zachau H-G, Rasshofer G, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: III. Applications of the digoxigenin system. Mol Gen HoppeSeyler 371: 939–951

    Google Scholar 

  • Serke S, Pachmann K (1988) An immunocytochemical method for the detection of fluorochrome-labeled DNA probes hybridized in situ with cellular RNA J Immunol Meth 112: 207–211

    CAS  Google Scholar 

  • Stollar BD, Rashtchian A (1987) Immunochemical approaches to gene probe assays. Anal Biochem 161: 387–394

    Article  PubMed  CAS  Google Scholar 

  • Syvänen AC, Alanen M, Söderlund H (1985) A complex of single-strand binding protein and M13 DNA as hybridization probe. Nucleic Acids Res 13: 2789–2802

    Article  PubMed  Google Scholar 

  • Syvänen AC, Tchen P, Ranki M, Söderlund H (1986) Time-resolved fluorometry: a sensitive method to quantify DNA-hybrids. Nucleic Acids Res 14: 1017–1028

    Article  PubMed  Google Scholar 

  • Taub F (1986) An assay for nucleic acid sequences, particularly genetic lesions. PCT Int Appl WO 86 /03227

    Google Scholar 

  • Tchen P, Fuchs RPP, Sage E, Leng M (1984) Chemically modified nucleic acids as immunodetectable probes in hybridization experiments. Proc Natl Acad Sci USA 81: 3466–3470

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson S, Lyga A, Huguenel E, Dattagupta N (1988) Detection of biotinylated nucleic acid hybrids by antibody-coated gold colloid. Anal Biochem 171: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Traincard F, Ternynck T, Danchin A, Avrameas S (1983) An immunoenzymic procedure for the demonstration of nucleic acid molecular hybridization. Ann Immunol 134: 399–405

    Google Scholar 

  • Van Prooijen-Knegt AC, Van Hoek JF, Bauman JG, Van Duijin P, Wool IG, Van der Ploeg M (1982) In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp Cell Res 141: 397–407

    Article  PubMed  Google Scholar 

  • Vary CPH, McMahon FJ, Barbone FP, Diamond SE (1986) Nonisotopic detection methods for strand displacement assays of nucleic acids. Clin Chem 32: 1696–1701

    PubMed  CAS  Google Scholar 

  • Wilchek M, Bayer EA (1988) The avidin-biotin complex in bioanalytical applications.Anal Biochem 171: 1–32

    CAS  Google Scholar 

  • Woodhead JL, Malcolm ADB (1984) Nonradioactive gene-specific probes. Biochem Soc Trans 12: 279–280

    CAS  Google Scholar 

  • Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attaching nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245

    Article  PubMed  CAS  Google Scholar 

  • Al-Hakim AH, Hull R (1986) Studies towards the development of chemically synthesized nonradioactive biotinylated nucleic acid hybridization probes. Nucleic Acids Res 14: 9965–9976

    Article  PubMed  CAS  Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl A (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York

    Google Scholar 

  • Baumann JG, Wiegant J, van Duijin P (1983) The development, using poly(Hg-U) in a model system, of a new method to visualize cytochemical hybridization in fluorescence microscopy. J Histochem Cytochem 31: 571–578

    Article  Google Scholar 

  • Ben-Hur E, Song PS (1984) The photochemistry and photobiology of furocoumarins (psoralens). Adv Radiat Biol 11: 131–171

    CAS  Google Scholar 

  • Bergstrom DE, Ruth JL (1977) Preparation of carbon-5 mercurated pyrimidine nucleosides. J Carbohydr (Nucleos Nucleot) 4: 257–269

    CAS  Google Scholar 

  • Brown DM, Frampton J, Goelet P, Kam J (1982) Sensitive detection of RNA using strand-specific M13 probes. Gene 20: 139–144

    Article  PubMed  CAS  Google Scholar 

  • Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry and biochemistry. Annu Rev Biochem 54: 1151–1193

    Article  PubMed  CAS  Google Scholar 

  • Cook AF, Vuocolo E, Brakel CL (1988) Synthesis and hybridization of a series of biotinylated oligonucleotides. Nucleic Acids Res 16: 4077–4095

    Article  PubMed  CAS  Google Scholar 

  • Dale RMK, Martin E, Livingston DC, Ward DC (1975) Direct covalent mercuration of nucleotides and polynucleotides. Biochemistry 14: 2447–2457

    Article  PubMed  CAS  Google Scholar 

  • Dattagupta N, Crothers DM (1984) Labeled nucleic acid probes and adducts for their preparation. Eur Pat App! 0131830

    Google Scholar 

  • Draper DE, Gold L (1980) A method for linking fluorescent labels to polynucleotides: application to studies or ribosome-ribonucleic acid interactions. Biochemistry 19: 1774–1781

    Article  PubMed  CAS  Google Scholar 

  • Ehrat M, Cecchini DJ, Giese RW (1986) Substrate-leash amplification with ribonuclease S-peptide and S-protein. Clin Chem 32: 1622–1630

    PubMed  CAS  Google Scholar 

  • Forster AC, McInnes JL, Skingle DC, Symons RH (1985) Nonradioactive hybridization probes prepared by the chemical labeling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res 13: 745–761

    Article  PubMed  CAS  Google Scholar 

  • Gebeyehu G, Rao PY, SooChan P, Simms DA, Kievan L (1987) Novel biotinylated nucleotide analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res 15: 4513–4534

    Article  PubMed  CAS  Google Scholar 

  • Gillam IC, Tener GM (1986) N4-(6-aminohexyl)cytidine and -deoxycytidine nucleotides can be used to label DNA. Anal Biochem 157: 199–207

    Article  PubMed  CAS  Google Scholar 

  • Gregersen N, Koch J, Koelvraa S, Petersen KB, Bolund L (1987) Improved methods for the detection of unique sequences in Southern blots of mammalian DNA by nonradioactive biotinylated DNA hybridization probes. Clin Chim Acta 169: 267–280

    Article  PubMed  CAS  Google Scholar 

  • Haralambidis J, Chai M, Tregear GW (1987) Preparation of base-modified nucleosides suitable for nonradioactive label attachment and their incorporation into synthetic oligodeoxyribonucleotides. Nucleic Acids Res 15: 4857–4876

    Article  PubMed  CAS  Google Scholar 

  • Höltke H-J, Kessler C (1990) Nonradioactive labeling of RNA transcripts in vitro with the hapten digoxigenin ( DIG); hybridization and ELISA-based detection. Nucleic Acids Res 18: 5843–5851

    Google Scholar 

  • Höltke H-J, Sagner G, Kessler C, Schmitz G (1991) Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113

    Google Scholar 

  • Höltke H-J, Seibl R, Burg J, Mühlegger K, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: II. Optimization of the digoxigenin system. Mol Gen Hoppe-Seyler 371: 929–938

    Google Scholar 

  • Hopman AHN, Wiegant J, Tesser GI, Van Duijn P (1986) A nonradioactive in situ hybridization method based on mercurated nucleic acid probes and sulfhydryl-hapten ligands. Nucleic Acids Res 14: 6471–6488

    Article  PubMed  CAS  Google Scholar 

  • Hopman AHN, Wiegant J, van Duijn P (1986) A new hybridocytochemical method based on mercurated nucleic acide probes and sulhydryl-hapten ligands. I. Stability of the mercurysulfhydryl bond and influence of the ligand structure on immunochemical detection of the hapten. Histochemistry 84: 169–178

    Google Scholar 

  • Kempe T, Sundquist WI, Chow F, Hu SL (1985) Chemical and enzymatic biotin-labeling of oligonucleotides. Nucleic Acids Res 13: 45–57

    Article  PubMed  CAS  Google Scholar 

  • Kessler C, Höltke H-J, Seibl R, Burg J, Mühlegger K (1990) Nonradioactive labeling and detection of nucleic acids: I. A novel DNA labeling and detection system based on digoxigenin:anti-digoxigenin ELISA principle (digoxigenin system). Mol Gen Hoppe-Seyler 371: 917–927

    Article  CAS  Google Scholar 

  • Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Landes GM (1985) Labeled DNA. Eur Pat Appl 0138357

    Google Scholar 

  • Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 633–637

    Article  Google Scholar 

  • Matthews JA, Kricka LJ (1988) Analytical strategies for the use of DNA probes. Anal Biochem 169: 1–25

    Article  PubMed  CAS  Google Scholar 

  • McCracken S (1989) Preparation of RNA transcripts using SP6 RNA polymerase. In: Keller GH, Manak MM (eds) DNA Probes, Stockton Press, New York, pp 119–120

    Google Scholar 

  • Mühlegger K, Huber E, von der Eltz H, Rüger R, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodigoxigenin. Mol Gen HoppeSeyler 371: 939–951

    Google Scholar 

  • Nelson PS, Frye RA, Liu E (1989a) Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations. Nucleic Acids Res 17: 7187–7194

    Article  PubMed  CAS  Google Scholar 

  • Nelson PS, Sherman-Gold R, Leon R (1989b) A new and versatile reagent for incorporating multiple primary aliphatic amines into synthetic oligonucleotides. Nucleic Acids Res 17: 7179–7186

    Article  PubMed  CAS  Google Scholar 

  • Pitcher DG, Owen RJ, Dyal P, Beck A (1987) Synthesis of a biotinylated DNA probe to detect ribosomal RNA cistrons in Providencia stuartii. FEMS Microbiol Lett 48: 283–287

    Article  CAS  Google Scholar 

  • Reisfeld A, Rothenberg JM, Bayer EA, Wilchek M (1987) Nonradioactive hybridization probes prepared by the reaction of biotin hydrazide with DNA. Biochem Biophys Res Commun 142: 519–526

    Article  PubMed  CAS  Google Scholar 

  • Renz M, Kurz C (1984) A colorimetric method for DNA hybridization. Nucleic Acids Res 12: 3435–3444

    Article  PubMed  CAS  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237–251

    Article  PubMed  CAS  Google Scholar 

  • Riley LK, Marshall ME, Coleman MS (1986) A method for biotinylating oligonucleotide probes for use in molecular hybridization. DNA 5: 333–337

    CAS  Google Scholar 

  • Schmitz GG, Walter T, Kessler C (1991) Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin ( DIG) by tailing with terminal transferase. Anal Biochem 192: 222–231

    Google Scholar 

  • Sheldon EL, Kellogg DE, Watson RE, Levinson CH, Erlich HA (1986) Use of nonisotopic M13 probes for genetic analysis: application to class II loci. Proc Natl Acad Sci USA 83: 9085–9089

    Article  PubMed  CAS  Google Scholar 

  • Sodja A, Davidson N (1978) Gene mapping and gene enrichment by the avidin-biotin interaction: use of cytochrome-c as a polyamine bridge. Nucleic Acids Res 5: 385–401

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Mitsuda T, Okuda K (1989) An alternative nonradioactive method for labeling DNA using biotin. Anal Biochem 179: 77–85

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Richter A, Lukacs N (1989) Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal Biochem 179: 98–105

    Article  PubMed  CAS  Google Scholar 

  • Urdea MS, Warner BD, Running JA, Stempien M, Clyne J, Horn T (1988) A comparison of nonradioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligonucleotide probes. Nucleic Acids Res 16: 4937–4956

    Article  PubMed  CAS  Google Scholar 

  • Vary CPH, McMahon FJ, Barbone FP, Diamond SE (1986) Nonisotopic detection methods for strand displacement assays of nucleic acids. Clin Chem 32: 1696–1701

    PubMed  CAS  Google Scholar 

  • Viscidi RP, Connelly CJ, Yolken RH (1986) Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization. J Clin Microbiol 23: 311–317

    PubMed  CAS  Google Scholar 

  • Ward DC, Waldrop AA, Langer PR (1982) Modified nucleotides and their use. Eur Pat App10063879

    Google Scholar 

  • Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attacking nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245

    Article  PubMed  CAS  Google Scholar 

  • Albarella JP, Anderson LH, Carricio RJ (1985a) Detection of polynucleotide sequence in sample of nucleic acids by using nucleic acid probe and contact of duplexes with immobilized antibody. Eur Pat Appl 0146039

    Google Scholar 

  • Albarella JP, DeRiemer LHA, Carrico RJ (1985b) Hybridization assay employing labeled pairs of hybrid binding reagents. Eur Pat Appl 0144914

    Google Scholar 

  • Anderson GL, Deinard AS (1974) Nitroblue tetrazolium ( NBT) test. Review Am J Med Technol 40: 345–353

    Google Scholar 

  • Arakawa H, Maeda M, Tsuji A (1982) Chemiluminescence enzyme immunoassay of 17hydroxyprogesterone using glucose oxidase and bis(2,4,6-trichlorophenyl)oxalatefluorescent dye system. Chem Pharm Bull 30: 3036–3039

    Article  PubMed  CAS  Google Scholar 

  • Arnold LJ, Hammond PW, Wiese WA, Nelson NC (1989) Assay formats involving acridinium ester-labeled DNA probes. Clin Chem 35: 1588–1594

    PubMed  CAS  Google Scholar 

  • Baret A, Fert V (1989) T4 and ultrasensitive TSH immunoassays using luminescent enhanced xanthine oxidase assay. J Biolumin Chemilumin 4: 149–153

    Article  PubMed  CAS  Google Scholar 

  • Beck S, Köster H (1990) Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem 62: 2258–2270

    Article  PubMed  CAS  Google Scholar 

  • Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB, Tyagi SK, Wilkins E, Wu T-G, Massey RJ (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnosis. Clin Chem 37: 1534–1539

    PubMed  CAS  Google Scholar 

  • Bos ES, van der Doelen AA, van Rooy N, Schuurs AH (1981) 3,3’,5,5’-Tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay. J Immunoassay 2: 187–204

    Google Scholar 

  • Bronstein I, Edwards B, Voyta JC (1989a) 1,2-Dioxetanes; novel chemiluminescent enzyme substrates. Applications to immunoassay. J Biolumin Chemilumin 4: 99–111

    Google Scholar 

  • Bronstein I, Kricka LJ (1989) Clinical applications of luminescent assay for enzymes and enzyme labels. J Clin Lab Anal 3: 316–322

    Article  PubMed  CAS  Google Scholar 

  • Bronstein I, Voyta JC (1989) Chemiluminescent detection of herpes simplex virus I DNA in blot and in situ hybridization assay. Clin Chem 35: 1856–1857

    PubMed  CAS  Google Scholar 

  • Bronstein I, Voyta JC, Edwards B (1989b) A comparison of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay. Anal Biochem 180: 95–98

    Article  PubMed  CAS  Google Scholar 

  • Buonocore V, Sgambati O, De Rosa M, Esposito E, Gambacorta A (1980) A constitutive ß-galactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila: properties of the enzyme in the free state and in immobilized whole cells. J Appl Biochem 2: 390–397

    CAS  Google Scholar 

  • Diamandis EP (1988) Immunoassay with time-resolved fluorescence spectroscopy: principles and applications (Review). Clin Biochem 21: 139–150

    PubMed  CAS  Google Scholar 

  • Diamandis EP, Bhayana V, Conway K, Reichstein E, Papanastasiou-Diamandis A (1988) Time-resolved fluoroimmunoassay of cortisol in serum with a europium chelate as label. Clin Biochem 21: 291–296

    Article  PubMed  CAS  Google Scholar 

  • Diamandis EP, Morton RC, Reichstein E, Khoasravi MJ (1989) Multiple fluorescence labeling with europium chelators. Application to time-resolved fluoroimmunoassays. Anal Chem 61: 48–53

    Google Scholar 

  • Donahue C, Neece V, Nycz C, Weng JMH, Walker GT, Vonk GP, Jurgensen S (1991) The San Diego Conference on Nucleic Acids: The leading edge. San Diego, CA, Abstract 23

    Google Scholar 

  • Evangelista RA, Pollak A, Allore B, Templeton EF, Morton RC, Diamandis EP (1988) A new europium chelate for protein labeling and time-resolved fluorometric applications. Clin Biochem 21: 173–178

    Article  PubMed  CAS  Google Scholar 

  • Fernley HN, Walker PG (1965) Kinetic behaviour of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem J 97: 95–103

    PubMed  CAS  Google Scholar 

  • Franci C, Vidal J (1988) Coupling redox and enzymic reactions improves the sensitivity of the ELISA-spot assay. J Immunol Methods 107: 239–244

    Article  PubMed  CAS  Google Scholar 

  • Gallati H (1979) Horseradish peroxidase: a study of the kinetics and the determination of optimal reaction conditions using hydrogen peroxide and 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as substrate. J Clin Chem Clin Biochem 17: 1–7

    PubMed  CAS  Google Scholar 

  • Garen A, Levinthal C (1960) A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 38: 470–483

    Google Scholar 

  • Geiger R, Hauber R, Miska N (1989) New, bioluminescence-enhanced detection system for use in enzyme activity tests, enzyme immunoassays, protein blotting and nucleic acid hybridization. Mol Cell Probes 3: 309–328

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ, Subramani S (1988) Review. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175: 5–13

    Google Scholar 

  • Guérin-Reverchon I, Chardonnet Y, Chignol MC, Thivolet J (1989) A comparison of methods for the detection of human papillomavirus DNA by in situ hybridization with biotinylated probes on human carcinoma cell lines: application to wart sections. J Immunol Meth 123: 167–176

    Article  Google Scholar 

  • Hauber R, Geiger R (1987) A new, very sensitive, bioluminescence-enhanced detection system for protein blotting. I. Ultrasensitive detection systems for protein blotting and DNA hybridization. J Clin Chem Clin Biochem 25: 511–514

    Google Scholar 

  • Heiles HBJ, Genersch E, Kessler C, Neumann R, Eggers HJ (1988) In situ hybridization with digoxigenin-labeled DNA of human papillomavirus (HPV 16/18) in HeLa and SiHa cells. BioTechniques 6: 978–981

    PubMed  CAS  Google Scholar 

  • Hemmilä I, Dakubu S, Mukka V-M, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137: 335–343

    Article  PubMed  Google Scholar 

  • Höltke HJ, Sagner G, Kessler C, Schmitz G (1991) Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113

    Google Scholar 

  • Höltke HJ, Ettl I, Finken M, West S, Kunz W (1992) Multiple nucleic acid labeling and rainbow detection. Anal Biochem, in press

    Google Scholar 

  • Inoue S, Hashida S, Tanaka K, Imagawa M, Ishikawa E (1985) Preparation of monomeric affinity-purified Fab’-ß-D-galactosidase conjugate for immunoenzymometric assay. Anal Lett 18: 1331–1344

    Article  CAS  Google Scholar 

  • Ishikawa E, Imagawa M, Hashida S, Yoshitake S, Hamaguchi Y, Ueno T (1983). Enzyme labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J Immunoassay 4: 209–327

    Article  PubMed  CAS  Google Scholar 

  • Iwai H, Ishihara F, Akihama S (1983) A fluorometric rate assay for peroxidase using the homovanillic acid-o-dianisidine-hydrogen peroxide system. Chem Pharm Bull 31: 3579–3582

    Article  PubMed  CAS  Google Scholar 

  • Jablonski E, Moomaw EW, Tullis RH, Ruth JL (1986) Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res 14: 6115–6128

    Article  PubMed  CAS  Google Scholar 

  • Johannsson A, Stanley CJ, Self CH (1985) A fast highly sensitive colorimetric enzyme immunoassay system demonstrating benefits of enzyme amplification in clinical chemistry. Clin Chim Acta 148: 119–124

    Article  PubMed  CAS  Google Scholar 

  • Kricka LJ (1988) Review. Clinical and biochemical applications of luciferase and luciferins. Anal Biochem 175: 14–21

    Article  PubMed  CAS  Google Scholar 

  • Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Lichter P, Tang CJC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69

    Google Scholar 

  • Lojda Z, Slaby J, Kraml J, Kolinska J (1973) Synthetic substrates in the histochemical demonstration of intestinal disaccharidases. Histochemie 34: 361–369

    Article  PubMed  CAS  Google Scholar 

  • Lovgren T, Hemmilä I, Pettersson K, Halonen P (1985) Time-resolved fluorometry in immunoassay. In: Collins WP (ed) Alternative immunoassays, John Wiley and Sons, Chichester, England

    Google Scholar 

  • McKnabb S, Rupp R, Tedesco JL (1989) Measuring contamination DNA in bioreactor derived monoclonals. Bio/Technology 7: 343–347

    Article  CAS  Google Scholar 

  • Miska W, Geiger R (1987) Synthesis and characterization of luciferin derivatives for use in bioluminescence enhanced enzyme immunoassay. I. New ultrasensitive detection systems for enzyme immunoassay. J Clin Chem Clin Biochem 25: 23–30

    Google Scholar 

  • Oser A, Roth WK, Valet G (1988) Sensitive nonradioactive dot-blot hybridization using DNA probes labeled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence. Nucleic Acids Res 16: 1181–1196

    Article  PubMed  CAS  Google Scholar 

  • Pollard-Knight D, Read CA, Downes MJ, Howard LA, Leadbetter MR, Pheby SA, McNaughton E, Syms A, Brady MAW (1990) Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with horseradish peroxidase. Anal Biochem 185: 84–89

    Article  PubMed  CAS  Google Scholar 

  • Porstmann B, Porstmann T, Nugel E (1981) Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay. J Clin Chem Clin Biochem 19: 435–439

    PubMed  CAS  Google Scholar 

  • Renz M, Kurz C (1984) A colorimetric method for DNA hybridization. Nucleic Acids Res 12: 3435–3444

    Article  PubMed  CAS  Google Scholar 

  • Schaap AP, Sandison MD, Handley RS (1987) Chemical and enzymatic triggering of 1,2dioxetanes. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane. Tetrahedron Lett 28: 1159–1162

    Google Scholar 

  • Seibl R, Höltke H-J, Rüger R, Meindl A, Zachau H-G, Rasshofer G, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection or nucleic acids: III. Applications of the digoxigenin system. Mol Gen HoppeSeyler 371: 939–951

    Google Scholar 

  • Self CH (1985) Enzyme amplification — a general method applied to provide an immunoassisted assay for placental alkaline phosphatase. J Immunol Methods 76: 389–393

    Article  PubMed  CAS  Google Scholar 

  • Soini E, Kojola H (1983) Time-resolved fluorometer for lanthianide chelates — a new generation of nonisotopic immunoassays. Clin Chem 29: 65–68

    PubMed  CAS  Google Scholar 

  • Stanley CJ, Johannsson A, Self CH (1985) Enzyme amplification can enhance both the speed and the sensitivity of immunoassays. J Immunol Methods 83: 89–95

    Article  PubMed  CAS  Google Scholar 

  • Taub F (1986) An assay for nucleic acid sequences, particularly genetic lesions. PCT Int Appl WO 86 /03227

    Google Scholar 

  • Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85

    Article  PubMed  CAS  Google Scholar 

  • Tomlinson S, Lyga A, Huguenel E, Dattagupta N (1988) Detection of biotinylated nucleic acid hybrids by antibody-coated gold colloid. Anal Biochem 171: 217–222

    Article  PubMed  CAS  Google Scholar 

  • Tsuji A, Maeda M, Arakawa H, Shimizu S, Tanabe K, Sudo Y (1987) Chemiluminescence enzyme immunoassay using invertase, glucose-6-phosphate dehydrogenase and ß-n-galactosidase as label. In: Scholmerich J, Anderson R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence, Wiley, Interscience, Chichester, England, pp 233–235

    Google Scholar 

  • Voyta JC, Edwards B, Bronstein I (1988) Ultrasensitive chemiluminescent detection of alkaline phosphatase activity. Clin Chem 34: 1157

    Google Scholar 

  • Wallenfels K, Lehmann J, Malhotra OP (1960) Untersuchungen über milchzuckerspaltende Enzyme — Die Spezifität der 13-Galactosidase von E. coli ML309. Biochem Z 333: 209–225

    CAS  Google Scholar 

  • West S, Schröder J, Kunz W (1990) A multiple-staining procedure for the detection of different DNA fragments on a single blot. Anal Biochem 190: 254–258

    Article  PubMed  CAS  Google Scholar 

  • Wilson MB, Nakane PK (1978) Recent development in the periodate method of conjugating horseradish peroxidase (HRPO) to antibodies. In: Knapp W, Holubar K, Wick G (eds) Immunofluorescence and related staining techniques, Elsevier/North Holland Biomedical Press, New York, Amsterdam, pp 215–224

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kessler, C. (1992). General Aspects of Nonradioactive Labeling and Detection. In: Kessler, C. (eds) Nonradioactive Labeling and Detection of Biomolecules. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00144-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00144-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-00146-2

  • Online ISBN: 978-3-662-00144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics