Advertisement

General Aspects of Nonradioactive Labeling and Detection

  • Christoph Kessler
Part of the Springer Laboratory book series (SLM)

Abstract

In the course of the past decade, increasing attempts to detect basic biological substances such as nucleic acids, proteins, and glycans by nonradioactive bioanalytical indicator systems have been made. In addition to special techniques such as nucleic acid detection via ethidium bromide intercalation (Bauer and Vinograd, 1968; Nathans and Smith, 1975; Ausubel et al., 1987), protein visualization by Coomassie staining (Bennett and Scott, 1971; Zehr et al., 1989), or the detection of glycans by periodate-Schiff staining (Kapitany and Zebrowski, 1973), an increasing number of indicator systems are being developed which are characterized by a higher specificity and sensitivity. Analytical systems which permit the analysis of different biomolecules by uniform detection principles are of particular interest.

Keywords

Nucleic Acid Probe Reporter Group Klenow Polymerase Nonradioactive Label Indirect System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl A (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New YorkGoogle Scholar
  2. Bauer W, Vinograd J (1968) Interaction of closed circular DNA with intercalative dyes. I. Superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol 33: 141–171PubMedCrossRefGoogle Scholar
  3. Bayer EA, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Meth Biochem Anal 26: 1–45CrossRefGoogle Scholar
  4. Bennett J, Scott KJ (1971) Quantitative staining of fraction I protein in polyacrylamide gels using Coomassie brilliant blue. Anal Biochem 43: 173–182PubMedCrossRefGoogle Scholar
  5. Kapitany RA, Zebrowski EJ (1973) A high resolution PAS stain for polyacrylamide gel electrophoresis. Anal Biochem 56: 361–369PubMedCrossRefGoogle Scholar
  6. Nathans D, Smith HO (1975) Restriction endonucleases in the analysis and restructuring of DNA molecules. Ann Rev Biochem 44: 273–293PubMedCrossRefGoogle Scholar
  7. Zehr BD, Savin TJ, Hall RE (1989) A one-step low background Coomassie staining procedure for polyacrylamide gels. Anal Biochem 182: 157–159PubMedCrossRefGoogle Scholar
  8. Briggs J (1987) Biosensors emerge from the laboratory. Nature 329: 565–566CrossRefGoogle Scholar
  9. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradioactive fluorescence resonance energy transfer. Proc Natl Acad Sci USA 85: 8790–8794PubMedCrossRefGoogle Scholar
  10. Collins M, Fritsch EF, Ellwood MS, Diamond SE, Williams JI, Brewen JG (1988)Google Scholar
  11. A novel diagnostic method based on strand displacement. Mol Cell Probes 2:15–30Google Scholar
  12. Coutlee F, Viscidi P, Yolken H (1989) Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection ofGoogle Scholar
  13. DNA-RNA hybrids. J Clin Microbiol 27:1002–1007Google Scholar
  14. Downs MEA, Kobayashi S, Karube I (1987) Review. New DNA technology and the DNA biosensor. Anal Lett 20: 1897–1927Google Scholar
  15. Hafemann DG, Parce JW, McConnell HM (1988) Light-addressable potentiometric sensor for biochemical systems. Science 240: 1182–1185CrossRefGoogle Scholar
  16. Henderson DR, Friedmann SB, Harris JD, Manning WB, Zoccoli MA (1986) CEDIA, a new homogeneous immunoassay system. Clin Chem 32: 1637–1641PubMedGoogle Scholar
  17. Hicks JM (1984) Fluorescence immunoassay. Hum Pathol 15: 112–116PubMedCrossRefGoogle Scholar
  18. Ikariyama Y, Shimada N, Yukiashi T, Aizawa M, Yamauchi S (1989) Microbiosensing device for real time determination. Bull Chem Soc Japan 62: 1864–1868CrossRefGoogle Scholar
  19. Jungell-Nortamo A, Syvänen AC, Luoma P, Söderlund H (1988) Nucleic acid sandwich hybridization: enhanced reaction rate with magnetic microparticles as carriers. Mol Cell Probes 2: 281–288PubMedCrossRefGoogle Scholar
  20. Kessler C (1991) The digoxigenin:anti-digoxigenin (DIG) technology — a survey on the concept and realization of a novel bioanalytical indicator system. Mol Cell Probes 5: 161–205PubMedCrossRefGoogle Scholar
  21. Keller GH, Manak MM (1989) DNA probes. Stockton Press, New YorkGoogle Scholar
  22. Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Krieg PA, Melton DA (1987) In vitro RNA synthesis with SP6 RNA polymerase. Meth Enzymol 155: 397–415Google Scholar
  23. Linke R, Köppers R (1988) Nicht-isotopische Immunoassays — ein Überblick. In: Borsdorf R, Fresenius W, Günzler H, Huber W, Kelker H, Luderwald I, Tölg G, Wisser H (eds) Analytiker Taschenbuch, Springer Verlag, Berlin/Heidelberg, pp 127–177Google Scholar
  24. Maitland NJ, Cox MF, Lynas C, Prime S, Crane I, Scully C (1987) Nucleic acid probes in the study of latent viral disease. J Oral Pathol 16: 199–211PubMedCrossRefGoogle Scholar
  25. McKnabb RR, Tedesco JL (1989) Measuring contaminating DNA in bioreactor derived monoclonals. BioTechnol 7: 343–347CrossRefGoogle Scholar
  26. Schray KJ, Artz PG, Hevey RC (1988) Determination of avidin and biotin by fluorescence polarization. Anal Chem 60: 853–855PubMedCrossRefGoogle Scholar
  27. Urdea MS, Warner BD, Running JA, Stempien M, Clyne J, Horn T (1988) A comparison of nonradioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme-labeled synthetic oligodeoxyribonucleotide probes. Nucleic Acids Res 16: 4937–4956PubMedCrossRefGoogle Scholar
  28. Vary CPH (1987) A homogeneous nucleic acid hybridization assay based on strand displacement. Nucleic Acids Res 15: 6883–6897PubMedCrossRefGoogle Scholar
  29. Wilchek M, Bayer EA (1987) Labeling glycoconjugates with hydrazide reagents. Meth Enzymol 138: 429–442PubMedCrossRefGoogle Scholar
  30. Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attaching nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245PubMedCrossRefGoogle Scholar
  31. Albarella JP, Anderson LH (1985) Detection of polynucleotide sequence in medium and when single stranded nucleic acids are present by using probe, intercalator and antibody. Eur Pat Appl 0146815Google Scholar
  32. Albarella JP, Anderson LH, Carrico RJ (1985) Detection of polynucleotide sequence in sample of nucleic acids by using nucleic acid probe and contact of duplexes with immobilized antibody. Eur Pat Appl 0146039Google Scholar
  33. Baumann JG, Wiegant J, van Duijin P (1983) The development, using poly(Hg-U) in a model system, of a new method to visualize cytochemical hybridization in fluorescence microscopy. J Histochem Cytochem 31: 571–578CrossRefGoogle Scholar
  34. Bayer EA, Wilchek M (1980) The use of the avidin-biotin complex as a tool in molecular biology. Meth Biochem Anal 26: 1–45CrossRefGoogle Scholar
  35. Bayer EA, Wilchek M (1990) Avidin-biotin technology. Methods in Enzymology, Vol 184. Academic Press, San DiegoGoogle Scholar
  36. Binder M (1987) In situ hybridization at the electron microscope level. Scanning Microsc 1: 331–338PubMedGoogle Scholar
  37. Bulow S, Link G (1986) A general and sensitive method for staining DNA and RNA blots. Nucleic Acids Res 14: 3973PubMedCrossRefGoogle Scholar
  38. Coutlee F, Bobo L, Mayur K, Yolken RH, Viscidi RP (1989a) Immunodetection of DNA with biotinylated RNA probes: a study of reactivity of a monoclonal antibody to DNA-RNA hybrids. Anal Biochem 181: 96–105PubMedCrossRefGoogle Scholar
  39. Coutlee F, Viscidi P, Yolken RH (1989b) Comparison of colorimetric, fluorescent, and enzymatic amplification substrate systems in an enzyme immunoassay for detection of DNA-RNA hybrids. J Clin Microbiol 27: 1002–1007PubMedGoogle Scholar
  40. Coutlee F, Yolken RH, Viscidi RP (1989c) Nonisotopic detection of RNA in an enzyme immunoassay using a monoclonal antibody against DNA-RNA hybrids. Anal Biochem 181: 153–162PubMedCrossRefGoogle Scholar
  41. Cremers AF, Jansen in de Wal N, Wiegant J, Dirks RW, Weisbeek P, Van der Ploeg M, Landegent JE (1987) Nonradioactive in situ hybridization. A comparison of several immunocytochemical detection systems using reflection-contrast and electron microscopy. Histochem 86: 609–615Google Scholar
  42. Czichos J, Koehler M, Reckmann B, Renz M (1989) Protein-DNA conjugates produced by UV irradiation and their use as probes for hybridization. Nucleic Acids Res 17: 1563–1572PubMedCrossRefGoogle Scholar
  43. Dattagupta N, Knowles W, Marchesi VT, Crothers DM (1984) Nucleic acid-protein conjugate. Eur Pat Appl 0154884Google Scholar
  44. Dattagupta N, Rae PMM, Knowles WJ, Crothers DM (1985) Nucleic acid detection probe comprises hybridisable single stranded part of nucleic acid connected to nonhybridisable nucleic acid with specific recognition site. Eur Pat Appl 0147665Google Scholar
  45. Dattagupta N, Rae PMM, Knowles WJ, Crothers DM (1988) Use of nonhybridizable nucleic acids for the detection of nucleic acid hybridization. US 4724202Google Scholar
  46. Gillam IC (1987) Nonradioactive probes for specific DNA sequences. Trends Biotech 5: 332–334CrossRefGoogle Scholar
  47. Herzberg M (1984) Molecular genetic probe, assay technique, and a kit using this molecular genetic probe. Eur Pat Appl 0128018Google Scholar
  48. Höltke H-J, Kessler C (1990) Nonradioactive labeling of RNA transcripts in vitro with the hapten digoxigenin ( DIG); hybridization and ELISA-based detection. Nucleic Acids Res 18: 5843–5851Google Scholar
  49. Höltke H-J, Seibl R, Burg J, Mühlegger K, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: II. Optimization of the digoxigenin system. Mol Gen Hoppe-Seyler 371: 929–938Google Scholar
  50. Hopmann AHN, Wiegant J, Tesser GI, Van Duijn P (1986a) A nonradioactive in situ hybridization method based on mercurated nucleic acid probes and sulfhydryl-hapten ligands. Nucleic Acids Res 14: 6471–6488CrossRefGoogle Scholar
  51. Hopman AHN, Wiegant J, van Duijn P (1986b) A new hybridocytochemical method based on mercurated nucleic acide probes and sulhydryl-hapten ligands. I. Stability of the mercurysulfhydryl bond and influence of the ligand structure on immunochemical detection of the hapten. Histochem 84: 169–178Google Scholar
  52. Hyman HC, Yogev D, Razin S (1987) DNA probes for detection and identification of Mycoplasma pneumoniaea and Mycoplasma genitalium. J Clin Microbiol 25: 726–728PubMedGoogle Scholar
  53. Jablonski E, Moomaw EW, Tullis RH, Ruth JL (1986) Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res 14: 6115–6128PubMedCrossRefGoogle Scholar
  54. Keller GH, Cumming CU, Huang DP, Manak MM, Ting R (1988) A chemical method for introducing haptens onto DNA probes. Anal Biochem 170: 441–450PubMedCrossRefGoogle Scholar
  55. Keller GH, Huang DP, Manak MM (1989) Labeling of DNA probes with a photoactivat-able hapten. Anal Biochem 177: 392–395PubMedCrossRefGoogle Scholar
  56. Kessler C (1991) The digoxigenin:anti-digoxigenin (DIG) technology — a survey on the concept and realization of a novel bioanalytical indicator system. Mol Cell Probes 5: 161–205PubMedCrossRefGoogle Scholar
  57. Kessler C (1992) Nonradioactive nucleic acid labeling methods. In: Kricka LJ (ed) Nonisotopic DNA probe techniques, Academic Press, pp 29–92Google Scholar
  58. Kessler C, Höltke H-J, Seibl R, Burg J, Mühlegger K (1990) Nonradioactive labeling and detection of nucleic acids: I. A novel DNA labeling and detection system based on digoxigenin:antidigoxigenin ELISA principle (digoxigenin system). Mol Gen HoppeSeyler 371: 917–927Google Scholar
  59. Kumar A, Tchen P, Roullet F, Cohen J (1988) Nonradioactive labeling of synthetic oligonucleotide probes with terminal deoxynucleotidyl transferase. Anal Biochem 169: 376–382PubMedCrossRefGoogle Scholar
  60. Landegent JE, Jansen in de Wal N, Baan RA, Hoeijmakers JH, Van der Ploeg M (1984) 2-Acetylaminofluorene-modified probes for the indirect hybridocytochemical detection of specific nucleic acid sequences. Exp Cell Res 153: 61–72Google Scholar
  61. Landegent JE, Jansen in de Wal N, Ploem JS, Van der Ploeg M (1985) Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy. J Histochem Cytochem 33: 1241–1246Google Scholar
  62. Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 6633–6637PubMedCrossRefGoogle Scholar
  63. Langer-Safer PR, Levine M, Ward DC (1982) Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA 79: 4381–4385PubMedCrossRefGoogle Scholar
  64. Lichter P, Tang CJC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cos-mid clones. Science 247: 64–69PubMedCrossRefGoogle Scholar
  65. McKnabb S, Rupp R, Tedesco JL (1989) Measuring contamination DNA in bioreactorderived monoclonals. Bio/Technology 7: 343–347CrossRefGoogle Scholar
  66. Mühlegger K, Huber E, von der Eltz H, Rüger R, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodigoxigenin. Mol Gen HoppeSeyler 371: 939–951Google Scholar
  67. Paau A, Platt SG, Sequeiro L (1983) Assay method and probe for polynucleotide sequence. UK Pat Appl 2125964Google Scholar
  68. Parsons G (1988) Development of DNA probe-based commercial assay. J Clin Immunoassay 11: 152–160Google Scholar
  69. Pezzella M, Pezzella F, Galli C, Macchi B, Verani P, Sorice F, Baroni CD (1987) In situ hybridization of human immunodeficiency virus ( HTLV-III) in cryostat sections of lymph nodes of lymphadenopathy syndrome patients. J Med Virol 22: 135–142Google Scholar
  70. Pollard-Knight D, Read CA, Downes MJ, Howard LA, Leadbetter MR, Pheby SA, McNaughton E, Syms A, Brady MAW (1990) Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with horseradish peroxidase. Anal Biochem 185: 84–89PubMedCrossRefGoogle Scholar
  71. Porstmann T, Ternynck T, Avrameas S (1985) Quantitation of 5-bromo-2-deoxyuridine incorporation into DNA: an enzyme immunoassay for the assessment of the lymphoid cell proliferative response. J Immunol Methods 82: 169–179PubMedCrossRefGoogle Scholar
  72. Rabin BR, Taylorson CJ, Hollaway MR (1985) Assay method using enzyme fragments as labels and new enzyme substrates producing coenzymes or prosthetic groups. Eur Pat App! 0156641Google Scholar
  73. Rashtchian A, Elredge J, Ottaviani M, Abbott M, Mock G, Lovern D, Klinger J, Parsons G (1987) Immunological capture of nucleic acid hybrids and application to nonradioactive DNA probe assay. Clin Chem 33: 1526–1530PubMedGoogle Scholar
  74. Reckmann B, Rieke E (1987) Verfahren and Mittel zur Bestimmung von Nucleinsäuren. Eur Pat App! 0286958Google Scholar
  75. Renz M (1983) Polynucleotide-histone H1 complexes as probes for blot hybridization. EMBO J 2: 817–822PubMedGoogle Scholar
  76. Sakamoto H, Traincard F, Vo-Quang T, Ternynck T, Guesdon JL, Avrameas S (1987) 5-Bromodeoxyuridine in vivo labeling of M13 DNA, and its use as a nonradioactive probe for hybridization experiments. Mol Cell Probes 1: 109–120Google Scholar
  77. Schmitz GG, Walter T, Kessler C (1991) Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin ( DIG) by tailing with terminal transferase. Anal Biochem 192: 222–231Google Scholar
  78. Seibl R, Höltke H-J, Rüger R, Meindl A, Zachau H-G, Rasshofer G, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: III. Applications of the digoxigenin system. Mol Gen HoppeSeyler 371: 939–951Google Scholar
  79. Serke S, Pachmann K (1988) An immunocytochemical method for the detection of fluorochrome-labeled DNA probes hybridized in situ with cellular RNA J Immunol Meth 112: 207–211Google Scholar
  80. Stollar BD, Rashtchian A (1987) Immunochemical approaches to gene probe assays. Anal Biochem 161: 387–394PubMedCrossRefGoogle Scholar
  81. Syvänen AC, Alanen M, Söderlund H (1985) A complex of single-strand binding protein and M13 DNA as hybridization probe. Nucleic Acids Res 13: 2789–2802PubMedCrossRefGoogle Scholar
  82. Syvänen AC, Tchen P, Ranki M, Söderlund H (1986) Time-resolved fluorometry: a sensitive method to quantify DNA-hybrids. Nucleic Acids Res 14: 1017–1028PubMedCrossRefGoogle Scholar
  83. Taub F (1986) An assay for nucleic acid sequences, particularly genetic lesions. PCT Int Appl WO 86 /03227Google Scholar
  84. Tchen P, Fuchs RPP, Sage E, Leng M (1984) Chemically modified nucleic acids as immunodetectable probes in hybridization experiments. Proc Natl Acad Sci USA 81: 3466–3470PubMedCrossRefGoogle Scholar
  85. Tomlinson S, Lyga A, Huguenel E, Dattagupta N (1988) Detection of biotinylated nucleic acid hybrids by antibody-coated gold colloid. Anal Biochem 171: 217–222PubMedCrossRefGoogle Scholar
  86. Traincard F, Ternynck T, Danchin A, Avrameas S (1983) An immunoenzymic procedure for the demonstration of nucleic acid molecular hybridization. Ann Immunol 134: 399–405Google Scholar
  87. Van Prooijen-Knegt AC, Van Hoek JF, Bauman JG, Van Duijin P, Wool IG, Van der Ploeg M (1982) In situ hybridization of DNA sequences in human metaphase chromosomes visualized by an indirect fluorescent immunocytochemical procedure. Exp Cell Res 141: 397–407PubMedCrossRefGoogle Scholar
  88. Vary CPH, McMahon FJ, Barbone FP, Diamond SE (1986) Nonisotopic detection methods for strand displacement assays of nucleic acids. Clin Chem 32: 1696–1701PubMedGoogle Scholar
  89. Wilchek M, Bayer EA (1988) The avidin-biotin complex in bioanalytical applications.Anal Biochem 171: 1–32Google Scholar
  90. Woodhead JL, Malcolm ADB (1984) Nonradioactive gene-specific probes. Biochem Soc Trans 12: 279–280Google Scholar
  91. Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attaching nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245PubMedCrossRefGoogle Scholar
  92. Al-Hakim AH, Hull R (1986) Studies towards the development of chemically synthesized nonradioactive biotinylated nucleic acid hybridization probes. Nucleic Acids Res 14: 9965–9976PubMedCrossRefGoogle Scholar
  93. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl A (1987) Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New YorkGoogle Scholar
  94. Baumann JG, Wiegant J, van Duijin P (1983) The development, using poly(Hg-U) in a model system, of a new method to visualize cytochemical hybridization in fluorescence microscopy. J Histochem Cytochem 31: 571–578CrossRefGoogle Scholar
  95. Ben-Hur E, Song PS (1984) The photochemistry and photobiology of furocoumarins (psoralens). Adv Radiat Biol 11: 131–171Google Scholar
  96. Bergstrom DE, Ruth JL (1977) Preparation of carbon-5 mercurated pyrimidine nucleosides. J Carbohydr (Nucleos Nucleot) 4: 257–269Google Scholar
  97. Brown DM, Frampton J, Goelet P, Kam J (1982) Sensitive detection of RNA using strand-specific M13 probes. Gene 20: 139–144PubMedCrossRefGoogle Scholar
  98. Cimino GD, Gamper HB, Isaacs ST, Hearst JE (1985) Psoralens as photoactive probes of nucleic acid structure and function: organic chemistry, photochemistry and biochemistry. Annu Rev Biochem 54: 1151–1193PubMedCrossRefGoogle Scholar
  99. Cook AF, Vuocolo E, Brakel CL (1988) Synthesis and hybridization of a series of biotinylated oligonucleotides. Nucleic Acids Res 16: 4077–4095PubMedCrossRefGoogle Scholar
  100. Dale RMK, Martin E, Livingston DC, Ward DC (1975) Direct covalent mercuration of nucleotides and polynucleotides. Biochemistry 14: 2447–2457PubMedCrossRefGoogle Scholar
  101. Dattagupta N, Crothers DM (1984) Labeled nucleic acid probes and adducts for their preparation. Eur Pat App! 0131830Google Scholar
  102. Draper DE, Gold L (1980) A method for linking fluorescent labels to polynucleotides: application to studies or ribosome-ribonucleic acid interactions. Biochemistry 19: 1774–1781PubMedCrossRefGoogle Scholar
  103. Ehrat M, Cecchini DJ, Giese RW (1986) Substrate-leash amplification with ribonuclease S-peptide and S-protein. Clin Chem 32: 1622–1630PubMedGoogle Scholar
  104. Forster AC, McInnes JL, Skingle DC, Symons RH (1985) Nonradioactive hybridization probes prepared by the chemical labeling of DNA and RNA with a novel reagent, photobiotin. Nucleic Acids Res 13: 745–761PubMedCrossRefGoogle Scholar
  105. Gebeyehu G, Rao PY, SooChan P, Simms DA, Kievan L (1987) Novel biotinylated nucleotide analogs for labeling and colorimetric detection of DNA. Nucleic Acids Res 15: 4513–4534PubMedCrossRefGoogle Scholar
  106. Gillam IC, Tener GM (1986) N4-(6-aminohexyl)cytidine and -deoxycytidine nucleotides can be used to label DNA. Anal Biochem 157: 199–207PubMedCrossRefGoogle Scholar
  107. Gregersen N, Koch J, Koelvraa S, Petersen KB, Bolund L (1987) Improved methods for the detection of unique sequences in Southern blots of mammalian DNA by nonradioactive biotinylated DNA hybridization probes. Clin Chim Acta 169: 267–280PubMedCrossRefGoogle Scholar
  108. Haralambidis J, Chai M, Tregear GW (1987) Preparation of base-modified nucleosides suitable for nonradioactive label attachment and their incorporation into synthetic oligodeoxyribonucleotides. Nucleic Acids Res 15: 4857–4876PubMedCrossRefGoogle Scholar
  109. Höltke H-J, Kessler C (1990) Nonradioactive labeling of RNA transcripts in vitro with the hapten digoxigenin ( DIG); hybridization and ELISA-based detection. Nucleic Acids Res 18: 5843–5851Google Scholar
  110. Höltke H-J, Sagner G, Kessler C, Schmitz G (1991) Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113Google Scholar
  111. Höltke H-J, Seibl R, Burg J, Mühlegger K, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: II. Optimization of the digoxigenin system. Mol Gen Hoppe-Seyler 371: 929–938Google Scholar
  112. Hopman AHN, Wiegant J, Tesser GI, Van Duijn P (1986) A nonradioactive in situ hybridization method based on mercurated nucleic acid probes and sulfhydryl-hapten ligands. Nucleic Acids Res 14: 6471–6488PubMedCrossRefGoogle Scholar
  113. Hopman AHN, Wiegant J, van Duijn P (1986) A new hybridocytochemical method based on mercurated nucleic acide probes and sulhydryl-hapten ligands. I. Stability of the mercurysulfhydryl bond and influence of the ligand structure on immunochemical detection of the hapten. Histochemistry 84: 169–178Google Scholar
  114. Kempe T, Sundquist WI, Chow F, Hu SL (1985) Chemical and enzymatic biotin-labeling of oligonucleotides. Nucleic Acids Res 13: 45–57PubMedCrossRefGoogle Scholar
  115. Kessler C, Höltke H-J, Seibl R, Burg J, Mühlegger K (1990) Nonradioactive labeling and detection of nucleic acids: I. A novel DNA labeling and detection system based on digoxigenin:anti-digoxigenin ELISA principle (digoxigenin system). Mol Gen Hoppe-Seyler 371: 917–927CrossRefGoogle Scholar
  116. Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Landes GM (1985) Labeled DNA. Eur Pat Appl 0138357Google Scholar
  117. Langer PR, Waldrop AA, Ward DC (1981) Enzymatic synthesis of biotin-labeled polynucleotides: novel nucleic acid affinity probes. Proc Natl Acad Sci USA 78: 633–637CrossRefGoogle Scholar
  118. Matthews JA, Kricka LJ (1988) Analytical strategies for the use of DNA probes. Anal Biochem 169: 1–25PubMedCrossRefGoogle Scholar
  119. McCracken S (1989) Preparation of RNA transcripts using SP6 RNA polymerase. In: Keller GH, Manak MM (eds) DNA Probes, Stockton Press, New York, pp 119–120Google Scholar
  120. Mühlegger K, Huber E, von der Eltz H, Rüger R, Kessler C (1990) Nonradioactive labeling and detection of nucleic acids: IV. Synthesis and properties of the nucleotide compounds of the digoxigenin system and of photodigoxigenin. Mol Gen HoppeSeyler 371: 939–951Google Scholar
  121. Nelson PS, Frye RA, Liu E (1989a) Bifunctional oligonucleotide probes synthesized using a novel CPG support are able to detect single base pair mutations. Nucleic Acids Res 17: 7187–7194PubMedCrossRefGoogle Scholar
  122. Nelson PS, Sherman-Gold R, Leon R (1989b) A new and versatile reagent for incorporating multiple primary aliphatic amines into synthetic oligonucleotides. Nucleic Acids Res 17: 7179–7186PubMedCrossRefGoogle Scholar
  123. Pitcher DG, Owen RJ, Dyal P, Beck A (1987) Synthesis of a biotinylated DNA probe to detect ribosomal RNA cistrons in Providencia stuartii. FEMS Microbiol Lett 48: 283–287CrossRefGoogle Scholar
  124. Reisfeld A, Rothenberg JM, Bayer EA, Wilchek M (1987) Nonradioactive hybridization probes prepared by the reaction of biotin hydrazide with DNA. Biochem Biophys Res Commun 142: 519–526PubMedCrossRefGoogle Scholar
  125. Renz M, Kurz C (1984) A colorimetric method for DNA hybridization. Nucleic Acids Res 12: 3435–3444PubMedCrossRefGoogle Scholar
  126. Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 113: 237–251PubMedCrossRefGoogle Scholar
  127. Riley LK, Marshall ME, Coleman MS (1986) A method for biotinylating oligonucleotide probes for use in molecular hybridization. DNA 5: 333–337Google Scholar
  128. Schmitz GG, Walter T, Kessler C (1991) Nonradioactive labeling of oligonucleotides in vitro with the hapten digoxigenin ( DIG) by tailing with terminal transferase. Anal Biochem 192: 222–231Google Scholar
  129. Sheldon EL, Kellogg DE, Watson RE, Levinson CH, Erlich HA (1986) Use of nonisotopic M13 probes for genetic analysis: application to class II loci. Proc Natl Acad Sci USA 83: 9085–9089PubMedCrossRefGoogle Scholar
  130. Sodja A, Davidson N (1978) Gene mapping and gene enrichment by the avidin-biotin interaction: use of cytochrome-c as a polyamine bridge. Nucleic Acids Res 5: 385–401PubMedCrossRefGoogle Scholar
  131. Takahashi T, Mitsuda T, Okuda K (1989) An alternative nonradioactive method for labeling DNA using biotin. Anal Biochem 179: 77–85PubMedCrossRefGoogle Scholar
  132. Theissen G, Richter A, Lukacs N (1989) Degree of biotinylation in nucleic acids estimated by a gel retardation assay. Anal Biochem 179: 98–105PubMedCrossRefGoogle Scholar
  133. Urdea MS, Warner BD, Running JA, Stempien M, Clyne J, Horn T (1988) A comparison of nonradioisotopic hybridization assay methods using fluorescent, chemiluminescent and enzyme labeled synthetic oligonucleotide probes. Nucleic Acids Res 16: 4937–4956PubMedCrossRefGoogle Scholar
  134. Vary CPH, McMahon FJ, Barbone FP, Diamond SE (1986) Nonisotopic detection methods for strand displacement assays of nucleic acids. Clin Chem 32: 1696–1701PubMedGoogle Scholar
  135. Viscidi RP, Connelly CJ, Yolken RH (1986) Novel chemical method for the preparation of nucleic acids for nonisotopic hybridization. J Clin Microbiol 23: 311–317PubMedGoogle Scholar
  136. Ward DC, Waldrop AA, Langer PR (1982) Modified nucleotides and their use. Eur Pat App10063879Google Scholar
  137. Agrawal S, Christodoulou C, Gait MJ (1986) Efficient methods for attacking nonradioactive labels to the 5’ ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res 14: 6227–6245PubMedCrossRefGoogle Scholar
  138. Albarella JP, Anderson LH, Carricio RJ (1985a) Detection of polynucleotide sequence in sample of nucleic acids by using nucleic acid probe and contact of duplexes with immobilized antibody. Eur Pat Appl 0146039Google Scholar
  139. Albarella JP, DeRiemer LHA, Carrico RJ (1985b) Hybridization assay employing labeled pairs of hybrid binding reagents. Eur Pat Appl 0144914Google Scholar
  140. Anderson GL, Deinard AS (1974) Nitroblue tetrazolium ( NBT) test. Review Am J Med Technol 40: 345–353Google Scholar
  141. Arakawa H, Maeda M, Tsuji A (1982) Chemiluminescence enzyme immunoassay of 17hydroxyprogesterone using glucose oxidase and bis(2,4,6-trichlorophenyl)oxalatefluorescent dye system. Chem Pharm Bull 30: 3036–3039PubMedCrossRefGoogle Scholar
  142. Arnold LJ, Hammond PW, Wiese WA, Nelson NC (1989) Assay formats involving acridinium ester-labeled DNA probes. Clin Chem 35: 1588–1594PubMedGoogle Scholar
  143. Baret A, Fert V (1989) T4 and ultrasensitive TSH immunoassays using luminescent enhanced xanthine oxidase assay. J Biolumin Chemilumin 4: 149–153PubMedCrossRefGoogle Scholar
  144. Beck S, Köster H (1990) Applications of dioxetane chemiluminescent probes to molecular biology. Anal Chem 62: 2258–2270PubMedCrossRefGoogle Scholar
  145. Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB, Tyagi SK, Wilkins E, Wu T-G, Massey RJ (1991) Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnosis. Clin Chem 37: 1534–1539PubMedGoogle Scholar
  146. Bos ES, van der Doelen AA, van Rooy N, Schuurs AH (1981) 3,3’,5,5’-Tetramethylbenzidine as an Ames test negative chromogen for horse-radish peroxidase in enzyme-immunoassay. J Immunoassay 2: 187–204Google Scholar
  147. Bronstein I, Edwards B, Voyta JC (1989a) 1,2-Dioxetanes; novel chemiluminescent enzyme substrates. Applications to immunoassay. J Biolumin Chemilumin 4: 99–111Google Scholar
  148. Bronstein I, Kricka LJ (1989) Clinical applications of luminescent assay for enzymes and enzyme labels. J Clin Lab Anal 3: 316–322PubMedCrossRefGoogle Scholar
  149. Bronstein I, Voyta JC (1989) Chemiluminescent detection of herpes simplex virus I DNA in blot and in situ hybridization assay. Clin Chem 35: 1856–1857PubMedGoogle Scholar
  150. Bronstein I, Voyta JC, Edwards B (1989b) A comparison of chemiluminescent and colorimetric substrates in a hepatitis B virus DNA hybridization assay. Anal Biochem 180: 95–98PubMedCrossRefGoogle Scholar
  151. Buonocore V, Sgambati O, De Rosa M, Esposito E, Gambacorta A (1980) A constitutive ß-galactosidase from the extreme thermoacidophile archaebacterium Caldariella acidophila: properties of the enzyme in the free state and in immobilized whole cells. J Appl Biochem 2: 390–397Google Scholar
  152. Diamandis EP (1988) Immunoassay with time-resolved fluorescence spectroscopy: principles and applications (Review). Clin Biochem 21: 139–150PubMedGoogle Scholar
  153. Diamandis EP, Bhayana V, Conway K, Reichstein E, Papanastasiou-Diamandis A (1988) Time-resolved fluoroimmunoassay of cortisol in serum with a europium chelate as label. Clin Biochem 21: 291–296PubMedCrossRefGoogle Scholar
  154. Diamandis EP, Morton RC, Reichstein E, Khoasravi MJ (1989) Multiple fluorescence labeling with europium chelators. Application to time-resolved fluoroimmunoassays. Anal Chem 61: 48–53Google Scholar
  155. Donahue C, Neece V, Nycz C, Weng JMH, Walker GT, Vonk GP, Jurgensen S (1991) The San Diego Conference on Nucleic Acids: The leading edge. San Diego, CA, Abstract 23Google Scholar
  156. Evangelista RA, Pollak A, Allore B, Templeton EF, Morton RC, Diamandis EP (1988) A new europium chelate for protein labeling and time-resolved fluorometric applications. Clin Biochem 21: 173–178PubMedCrossRefGoogle Scholar
  157. Fernley HN, Walker PG (1965) Kinetic behaviour of calf-intestinal alkaline phosphatase with 4-methylumbelliferyl phosphate. Biochem J 97: 95–103PubMedGoogle Scholar
  158. Franci C, Vidal J (1988) Coupling redox and enzymic reactions improves the sensitivity of the ELISA-spot assay. J Immunol Methods 107: 239–244PubMedCrossRefGoogle Scholar
  159. Gallati H (1979) Horseradish peroxidase: a study of the kinetics and the determination of optimal reaction conditions using hydrogen peroxide and 2,2’-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) as substrate. J Clin Chem Clin Biochem 17: 1–7PubMedGoogle Scholar
  160. Garen A, Levinthal C (1960) A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta 38: 470–483Google Scholar
  161. Geiger R, Hauber R, Miska N (1989) New, bioluminescence-enhanced detection system for use in enzyme activity tests, enzyme immunoassays, protein blotting and nucleic acid hybridization. Mol Cell Probes 3: 309–328PubMedCrossRefGoogle Scholar
  162. Gould SJ, Subramani S (1988) Review. Firefly luciferase as a tool in molecular and cell biology. Anal Biochem 175: 5–13Google Scholar
  163. Guérin-Reverchon I, Chardonnet Y, Chignol MC, Thivolet J (1989) A comparison of methods for the detection of human papillomavirus DNA by in situ hybridization with biotinylated probes on human carcinoma cell lines: application to wart sections. J Immunol Meth 123: 167–176CrossRefGoogle Scholar
  164. Hauber R, Geiger R (1987) A new, very sensitive, bioluminescence-enhanced detection system for protein blotting. I. Ultrasensitive detection systems for protein blotting and DNA hybridization. J Clin Chem Clin Biochem 25: 511–514Google Scholar
  165. Heiles HBJ, Genersch E, Kessler C, Neumann R, Eggers HJ (1988) In situ hybridization with digoxigenin-labeled DNA of human papillomavirus (HPV 16/18) in HeLa and SiHa cells. BioTechniques 6: 978–981PubMedGoogle Scholar
  166. Hemmilä I, Dakubu S, Mukka V-M, Siitari H, Lövgren T (1984) Europium as a label in time-resolved immunofluorometric assays. Anal Biochem 137: 335–343PubMedCrossRefGoogle Scholar
  167. Höltke HJ, Sagner G, Kessler C, Schmitz G (1991) Sensitive chemiluminescent detection of digoxigenin-labeled nucleic acids: a fast and simple protocol and its application. BioTechniques 12: 104–113Google Scholar
  168. Höltke HJ, Ettl I, Finken M, West S, Kunz W (1992) Multiple nucleic acid labeling and rainbow detection. Anal Biochem, in pressGoogle Scholar
  169. Inoue S, Hashida S, Tanaka K, Imagawa M, Ishikawa E (1985) Preparation of monomeric affinity-purified Fab’-ß-D-galactosidase conjugate for immunoenzymometric assay. Anal Lett 18: 1331–1344CrossRefGoogle Scholar
  170. Ishikawa E, Imagawa M, Hashida S, Yoshitake S, Hamaguchi Y, Ueno T (1983). Enzyme labeling of antibodies and their fragments for enzyme immunoassay and immunohistochemical staining. J Immunoassay 4: 209–327PubMedCrossRefGoogle Scholar
  171. Iwai H, Ishihara F, Akihama S (1983) A fluorometric rate assay for peroxidase using the homovanillic acid-o-dianisidine-hydrogen peroxide system. Chem Pharm Bull 31: 3579–3582PubMedCrossRefGoogle Scholar
  172. Jablonski E, Moomaw EW, Tullis RH, Ruth JL (1986) Preparation of oligodeoxynucleotide-alkaline phosphatase conjugates and their use as hybridization probes. Nucleic Acids Res 14: 6115–6128PubMedCrossRefGoogle Scholar
  173. Johannsson A, Stanley CJ, Self CH (1985) A fast highly sensitive colorimetric enzyme immunoassay system demonstrating benefits of enzyme amplification in clinical chemistry. Clin Chim Acta 148: 119–124PubMedCrossRefGoogle Scholar
  174. Kricka LJ (1988) Review. Clinical and biochemical applications of luciferase and luciferins. Anal Biochem 175: 14–21PubMedCrossRefGoogle Scholar
  175. Kricka LJ (1992) Nonisotopic DNA probe techniques. Academic Press, San Diego Lichter P, Tang CJC, Call K, Hermanson G, Evans GA, Housman D, Ward DC (1990) High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones. Science 247: 64–69Google Scholar
  176. Lojda Z, Slaby J, Kraml J, Kolinska J (1973) Synthetic substrates in the histochemical demonstration of intestinal disaccharidases. Histochemie 34: 361–369PubMedCrossRefGoogle Scholar
  177. Lovgren T, Hemmilä I, Pettersson K, Halonen P (1985) Time-resolved fluorometry in immunoassay. In: Collins WP (ed) Alternative immunoassays, John Wiley and Sons, Chichester, EnglandGoogle Scholar
  178. McKnabb S, Rupp R, Tedesco JL (1989) Measuring contamination DNA in bioreactor derived monoclonals. Bio/Technology 7: 343–347CrossRefGoogle Scholar
  179. Miska W, Geiger R (1987) Synthesis and characterization of luciferin derivatives for use in bioluminescence enhanced enzyme immunoassay. I. New ultrasensitive detection systems for enzyme immunoassay. J Clin Chem Clin Biochem 25: 23–30Google Scholar
  180. Oser A, Roth WK, Valet G (1988) Sensitive nonradioactive dot-blot hybridization using DNA probes labeled with chelate group substituted psoralen and quantitative detection by europium ion fluorescence. Nucleic Acids Res 16: 1181–1196PubMedCrossRefGoogle Scholar
  181. Pollard-Knight D, Read CA, Downes MJ, Howard LA, Leadbetter MR, Pheby SA, McNaughton E, Syms A, Brady MAW (1990) Nonradioactive nucleic acid detection by enhanced chemiluminescence using probes directly labeled with horseradish peroxidase. Anal Biochem 185: 84–89PubMedCrossRefGoogle Scholar
  182. Porstmann B, Porstmann T, Nugel E (1981) Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay. J Clin Chem Clin Biochem 19: 435–439PubMedGoogle Scholar
  183. Renz M, Kurz C (1984) A colorimetric method for DNA hybridization. Nucleic Acids Res 12: 3435–3444PubMedCrossRefGoogle Scholar
  184. Schaap AP, Sandison MD, Handley RS (1987) Chemical and enzymatic triggering of 1,2dioxetanes. Alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane. Tetrahedron Lett 28: 1159–1162Google Scholar
  185. Seibl R, Höltke H-J, Rüger R, Meindl A, Zachau H-G, Rasshofer G, Roggendorf M, Wolf H, Arnold N, Wienberg J, Kessler C (1990) Nonradioactive labeling and detection or nucleic acids: III. Applications of the digoxigenin system. Mol Gen HoppeSeyler 371: 939–951Google Scholar
  186. Self CH (1985) Enzyme amplification — a general method applied to provide an immunoassisted assay for placental alkaline phosphatase. J Immunol Methods 76: 389–393PubMedCrossRefGoogle Scholar
  187. Soini E, Kojola H (1983) Time-resolved fluorometer for lanthianide chelates — a new generation of nonisotopic immunoassays. Clin Chem 29: 65–68PubMedGoogle Scholar
  188. Stanley CJ, Johannsson A, Self CH (1985) Enzyme amplification can enhance both the speed and the sensitivity of immunoassays. J Immunol Methods 83: 89–95PubMedCrossRefGoogle Scholar
  189. Taub F (1986) An assay for nucleic acid sequences, particularly genetic lesions. PCT Int Appl WO 86 /03227Google Scholar
  190. Tautz D, Pfeifle C (1989) A nonradioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback. Chromosoma 98: 81–85PubMedCrossRefGoogle Scholar
  191. Tomlinson S, Lyga A, Huguenel E, Dattagupta N (1988) Detection of biotinylated nucleic acid hybrids by antibody-coated gold colloid. Anal Biochem 171: 217–222PubMedCrossRefGoogle Scholar
  192. Tsuji A, Maeda M, Arakawa H, Shimizu S, Tanabe K, Sudo Y (1987) Chemiluminescence enzyme immunoassay using invertase, glucose-6-phosphate dehydrogenase and ß-n-galactosidase as label. In: Scholmerich J, Anderson R, Kapp A, Ernst M, Woods WG (eds) Bioluminescence and chemiluminescence, Wiley, Interscience, Chichester, England, pp 233–235Google Scholar
  193. Voyta JC, Edwards B, Bronstein I (1988) Ultrasensitive chemiluminescent detection of alkaline phosphatase activity. Clin Chem 34: 1157Google Scholar
  194. Wallenfels K, Lehmann J, Malhotra OP (1960) Untersuchungen über milchzuckerspaltende Enzyme — Die Spezifität der 13-Galactosidase von E. coli ML309. Biochem Z 333: 209–225Google Scholar
  195. West S, Schröder J, Kunz W (1990) A multiple-staining procedure for the detection of different DNA fragments on a single blot. Anal Biochem 190: 254–258PubMedCrossRefGoogle Scholar
  196. Wilson MB, Nakane PK (1978) Recent development in the periodate method of conjugating horseradish peroxidase (HRPO) to antibodies. In: Knapp W, Holubar K, Wick G (eds) Immunofluorescence and related staining techniques, Elsevier/North Holland Biomedical Press, New York, Amsterdam, pp 215–224Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Christoph Kessler

There are no affiliations available

Personalised recommendations