Skip to main content

Zusammenfassung

Abbildung 34a zeigt die Gegenüberstellung der 1H-, 13C und 31P-NMR-Spektren des menschlichen Unterarms. Im 1H-NMR-Spektrum sind nur 2 Signale sichtbar, die dem Gewebswasser und den CH2-Ketten der Fette zuzuordnen sind. Das 13CNMR-Spektrum umfaßt einen wesentlich größeren chemischen Verschiebungsbereich und ist gegenüber dem 1HNMR-Spektrum erheblich linienreicher, jedoch müssen auch hier alle Signale bestimmten Kohlenstoffatomen des Gewebefetts zugeordnet werden (Abb. 34b). Hingegen werden die Signale des 31P-NMR-Spektrums vom ATP, vom Kreatinphosphat (KP) und vom anorganischem Phosphat (Pa) hervorgerufen (Abb. 34c).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Eine erste Einführung

  • Rudolph, J (1967) Physikalische Methoden in der Chemie: Kernmagnetische Resonanz 1 und 2. Chem i. U. Zeit 1: 77,117

    Google Scholar 

Lehrbücher

  • Abragam A(1961) The principles of nuclear magnetism. Clarendon, Oxford

    Google Scholar 

  • Ein vor allem für Physiker geschriebenes Standardwerk

    Google Scholar 

  • Becker ED (1980) High resolution NMR. Theory and chemical applications, 2nd edn. Academic Press, New York

    Google Scholar 

  • Günther H (1983) NMR-Spektroskopie, 2. Aufl. Thieme, Stuttgart Deutsches Standardwerk für chemisch orientierte Anwendungen der 1H-NMR-Spektroskopie

    Google Scholar 

  • Shaw D (1976) Fourier transform NMR spectroscopy. Elsevier/North Holland, Amsterdam

    Google Scholar 

  • Slichter CP (1978) Principles of magnetic resonance. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

Lehrbücher über biochemische Anwendungen der NMR-Spektroskopie

  • Dwek RA (1973) Nuclear magnetic resonance in biochemistry. Oxford University Press, London

    Google Scholar 

  • Govil G, Hosur RV (1982) NMR: Basic principles and progress, vo120: Conformation of biological molecules : New results from NMR. Springer, Berlin Heidelberg New York

    Google Scholar 

  • James TL (1975) Nuclear magnetic resonance in biochemistry: Principles and applications. Acade-mic Press, New York

    Google Scholar 

  • Jardetzky O, Roberts GCK (1981) NMR in molecular biology. Academic Press, New York

    Google Scholar 

  • Knowles PF, Marsh D, Rattle HWE (1976) Magnetic resonance of biomolecules. Wiley, London

    Google Scholar 

  • Opella SJ, Lu P (1979) NMR and biochemistry. Dekker, New York Basel

    Google Scholar 

  • Wüthrich K (1976) NMR in biological research: Peptides and proteins. North Holland, Amsterdam

    Google Scholar 

Monographien und Fortschrittsberichte

  • NMR in Biology. Dwek RA, Campbell ID, Richards RE, Williams RJP (eds) Academic Press, Lon-don,1977

    Google Scholar 

  • Biological applications of magnetic resonance. Shulman RG Academic Press, New York, 1979

    Google Scholar 

  • NMR of intact biological systems. Williams RJP, Andrew ER, Radda GK (eds) Philos Trans R Soc Lond [Biol] 289: 379–559 (1980)

    Google Scholar 

  • Magnetic resonance in biology. Cohen JS. Wiley&Sons, New York, 1980

    Google Scholar 

  • NMR in medicine. Damadian RR (Hrsg) Springer, Berlin Heidelberg New York, 1981

    Google Scholar 

  • Nuclear magnetic resonance and its applications to living systems. Gadian DG, Oxford University Press, Oxford, 1982

    Google Scholar 

  • Noninvasive probes of tissue metabolism. Cohen JS (ed) Wiley&Sons, New York, 1982

    Google Scholar 

Übersichtsartikel über In-vivo-NMR-Spektroskopie

Ausgewählte Originalpublikationen He—

  • Studies of acidosis in the ischemic heart by phosphorus NMR. Garlick P, Radda GK, Seeley JP, Biochem J 184: 547 (1979)

    PubMed  CAS  Google Scholar 

  • NMR studies of cancer and heart disease. Hollis DP, Bull Magn Reson 1: 27 (1979)

    CAS  Google Scholar 

  • NMR of phosphorus in the perfused heart. Hollis DP, IEEE Trans Nucl Sci 27: 1250 (1980)

    Article  Google Scholar 

  • Phosphorus-31 NMR studies of the energetic state and intracellular pH of the isolated rat heart during ischemia. Rossi A et al., J Physiol (Paris) 76: 902 (1980)

    CAS  Google Scholar 

  • Studies of metabolism in the isolated, perfused rat heart using carbon-13 NMR. Bailey IA et al., FEBS Lett 123: 315 (1981)

    Article  PubMed  CAS  Google Scholar 

  • The effects of reperfusion on the phosphorus-31 NMR spectrum of ischemic rat hearts. Bailey IA et al., Biochem Soc Trans 9: 234 (1981)

    CAS  Google Scholar 

  • A phosphorus-31 NMR study of the effects ofreflow on the ischemic rat heart. Bailey IA et al., Biochim Biophys Acta 637: 1 (1981)

    Article  PubMed  CAS  Google Scholar 

  • A phosphorus-31 NMR study of metabolism in the hypoxic perfused rat heart. Matthews PM, Biochem Soc Trans 9: 236 (1981)

    CAS  Google Scholar 

  • The steady-state rate of ATP synthesis in the perfused rat heart measured by phosphorus-31 NMR saturation transfer. Matthews PM et al., Biochem Biophys Res Commun 103: 1052 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Measurement offree magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 NMR and multiequilibrium analysis. Wu ST et al., Biochemistry 20: 7399 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Gated Sodium-23 NMR images of an isolated perfused working rat heart. DeLayre IL et al., Science 212: 935 (1981)

    Article  PubMed  CAS  Google Scholar 

  • A phosphorus-31 NMR study of the metabolic andfunctional effects ofchanges in extracellular calcium on the isolated perfused rat heart. Seymour AM et al., Biochem Soc Trans 9: 475 (1981)

    CAS  Google Scholar 

  • Assessment ofpharmacological treatment of myocardial infarction by phosphorus-31 with surface coils. Nunnally RL, Bottomley PA, Science 211: 177 (1981)

    Article  PubMed  CAS  Google Scholar 

  • A phosphorus-31 NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Matthews PM, Biochim Biophys Acta 721: 312 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Effects of l- and d-propranolol on the ischemic myocardial metabolism of the isolated guinea pig heart, as studied by phosphorus-31 NMR. Nakazawa M et al., J Cardiovasc Pharmacol 4: 700 (1982)

    Article  PubMed  CAS  Google Scholar 

  • The effects of insulin on myocardial metabolism and acidosis in normoxia and ischemia. A phosphorus31 NMR study. Bailey IA, Biochim Biophys Acta 720: 17 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Phosphorus NMR spectroscopy of cardiac and skeletal muscles. Ingwall JS, Am J Physiol 242: H729 (1982)

    Google Scholar 

  • In vivo carbon-13 NMR studies of heart metabolism. Neurohr KJ et al., Proc Natl Acad Sci USA 80: 1603 (1983)

    Article  PubMed  CAS  Google Scholar 

Niere

  • Study of rat kidney in vivo during hypovolemic shock by 3'P--NMR. Chan L et al., Biochem Soc Trans 9: 239 (1981)

    CAS  Google Scholar 

  • Phosphorus NMR study of the rat kidney in vivo. Balaban RS et al., Kidney Int 20: 575 (1981)

    Article  PubMed  CAS  Google Scholar 

  • The role of intrarenal pH in regulation of ammoniagenesis: 31 P-NMR studies of the isolated perfused rat kidney. Ackerman JJH et al., J Physiol (Lond) 319: 65 (1981)

    CAS  Google Scholar 

Leber

  • Phosphorus-31 NMR analysis of the renal response to respiratory acidosis. Freeman D et al., Biochem Soc Trans 10: 399 (1982)

    CAS  Google Scholar 

  • Energetics of sodium transport in the kidney. Saturation transfer phosphorus-31 NMR. Freeman D et al., Biochim Biophys Acta 762: 325 (1983)

    Article  PubMed  CAS  Google Scholar 

  • Phosphorus-31 NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver. Kruijff BDe et al., Biochim Biophys Acta 600: 343 (1980)

    Article  PubMed  Google Scholar 

  • Effects offructose on the energy metabolism and acid-base status of the perfused starved-rat liver: A31 P-NMR study. Iles RA et al., Biochem J 192: 191 (1980)

    PubMed  CAS  Google Scholar 

  • Direct proton and natural abundance carbon-13 NMR observation of liver changes induced by ethionine. Block RE, Biochem Biophys Res Commun 108: 940 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Metabolic interrelationships of intracellular pH measured by double-barrelled microelectrodes in perfused rat liver. Cohen RD et al., J Physiol (Lond) 330: 69 (1982)

    CAS  Google Scholar 

  • Hepatic metabolism by phosphorus-31 NMR. Iles RA, Griffiths JR, Biosci Rep 2: 735 (1982)

    Article  PubMed  CAS  Google Scholar 

Muskelgewebe

  • Studies of the biochemistry of contracting and relaxing muscle by the use of 31 P-NMR in conjunction with other techniques. Dawson MJ et al., Philos Trans R Soc Lond [Biol] 289: 445 (1980)

    Article  CAS  Google Scholar 

  • Natural abundance carbon-13 NMR spectra of intact muscle. Doyle DD et al., FEBS Lett 131: 147 (1981)

    Article  PubMed  CAS  Google Scholar 

  • High-resolution proton magnetic resonance spectra of muscle. Yoshizaki K et al., Biochim Biophys Acta 678: 283 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Phosphorus-31 NMR studies of energy metabolism and tissue pH in ischemic rat leg. Thulborn KR, Biochem Soc Trans 9: 237 (1981)

    CAS  Google Scholar 

  • Mitochondrial regulation of phosphocreatin/inorganic phosphate ratio in exercising human muscle: A gated phosphorus-31 NMR study. Chance B et al., Proc Natl Acad Sci USA 78: 6714 (1981)

    Article  PubMed  CAS  Google Scholar 

  • NMR analysis of intact tissue including several examples of normal and diseased human muscle deter-minations. Glonek T et al., NMR in Medicine, Damadian R (ed) Springer, Berlin Heidelberg New York, 1980

    Google Scholar 

  • Simultaneous in vivo measurement of oxygen utilization and high-energy phosphate metabolism in rab-bit skeletal muscle by Multinuclear proton and phosphorus-31 NMR. Thulborn KR et al., J Magn Reson 45: 362 (1981)

    CAS  Google Scholar 

  • Generation of phosphodiesters during fast-to-slow muscle transformation. A phosphorus-31 NMR study. Burt CT et al., Biochim Biophys Acta 721: 492 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Phosphorus-31 NMR of contractile systems. Barany M, Glonek T, Methods Enzymol 85:624 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Application of phosphorus-31 NMR spectroscopy to the study of striated muscle metabolism. Meyer RA et al., Am J Physiol 242: C 1 (1982)

    Google Scholar 

  • Phosphorus-31 NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Chance B et al., Proc Natl Acad Sci USA 79: 7714 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Preliminary observations on the metabolic responses to exercise in humans, using phosphorus-31 NMR. Ross BD et al., Ciba Found Symp 87: 145 (1982)

    PubMed  CAS  Google Scholar 

  • Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Newman RJ et al., Br Med I 284: 1072 (1982)

    Article  CAS  Google Scholar 

  • Clinical use of NMR in the investigation of myopathy. Edwards RHT et al., Lancet I: 725 (1982)

    Article  Google Scholar 

  • Quantitation of lactid acid in caffeine-contracted and resting frog muscle by high resolution natural abundance carbon-13 NMR. Doyle DD, Barany M, FEBS Lett 140:237 (1982)

    Article  PubMed  CAS  Google Scholar 

Gehirn

  • Localized noninvasive detection and description of ischemic cerebral damage using NMR. Fossel ET, Ingwall JS. Cerebrovasc Dis 12: 91 (1981)

    Google Scholar 

  • Cerebral energy metabolism in rats studied by phosphorus nuclear magnetic resonance using surface coils. Bottomlev PA et al., Magn Reson Imaging 1: 81 (1982)

    Article  Google Scholar 

  • Phosphorus-31 NMR saturation transfer measurements of the steady state rates of creatin kinase and ATPsynthease in the rat brain. Shoubridge EA et al., FEBS Lett 140: 288 (1982)

    Article  CAS  Google Scholar 

  • Developmental changes of creatine kinase metabolism in rat brain. Nowood WI et al., Am J Physiol 244: C205 (1983)

    Google Scholar 

  • In vivo phosphorus-31 NMR studies on experimental cerebral infarction. Naruse S et al., Jpn J Physiol 33: 19 (1983)

    Article  PubMed  CAS  Google Scholar 

  • Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Cady EB et al., Lancet 1(8333): 1059 (1983)

    Article  PubMed  CAS  Google Scholar 

  • Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Sillerud LO, Shulman RG, Biochemistry 22: 1087 (1983)

    Article  PubMed  CAS  Google Scholar 

Tumorgewebe

  • Use of the NMR of nuclei other than proton in tumor studies. Granger P, J Biophys Med Nuc 15:137 (1981)

    Google Scholar 

  • Phosphorus-31 NMR investigation of solid tumors in the living rat. Griffiths JR et al., Biosci Rep 1: 319 (1981)

    Article  PubMed  CAS  Google Scholar 

  • Human tumors as examined by in vivo phosphorus-31 NMR in athymic mice. Evanochko WT et al., Biochem Biophys Res Commun 109: 1346 (1982)

    Article  PubMed  CAS  Google Scholar 

  • Phosphorus-31 NMR spectroscopy of in vivo tumors. Ng TC et al., J Magn Reson 49: 271 (1982)

    CAS  Google Scholar 

  • NMR studies of tumors. Griffiths JR, Iles RA, Biosci Rep 2: 719 (1982)

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, K. (1984). NMR-Spektroskopie intakter biologischer Systeme. In: NMR-Tomographie und -Spektroskopie in der Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-00120-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-00120-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-13076-5

  • Online ISBN: 978-3-662-00120-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics