Advertisement

NMR-Spektroskopie intakter biologischer Systeme

  • Klaus Roth

Zusammenfassung

Abbildung 34a zeigt die Gegenüberstellung der 1H-, 13C und 31P-NMR-Spektren des menschlichen Unterarms. Im 1H-NMR-Spektrum sind nur 2 Signale sichtbar, die dem Gewebswasser und den CH2-Ketten der Fette zuzuordnen sind. Das 13CNMR-Spektrum umfaßt einen wesentlich größeren chemischen Verschiebungsbereich und ist gegenüber dem 1HNMR-Spektrum erheblich linienreicher, jedoch müssen auch hier alle Signale bestimmten Kohlenstoffatomen des Gewebefetts zugeordnet werden (Abb. 34b). Hingegen werden die Signale des 31P-NMR-Spektrums vom ATP, vom Kreatinphosphat (KP) und vom anorganischem Phosphat (Pa) hervorgerufen (Abb. 34c).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

Eine erste Einführung

  1. Rudolph, J (1967) Physikalische Methoden in der Chemie: Kernmagnetische Resonanz 1 und 2. Chem i. U. Zeit 1: 77,117Google Scholar

Lehrbücher

  1. Abragam A(1961) The principles of nuclear magnetism. Clarendon, OxfordGoogle Scholar
  2. Ein vor allem für Physiker geschriebenes StandardwerkGoogle Scholar
  3. Becker ED (1980) High resolution NMR. Theory and chemical applications, 2nd edn. Academic Press, New YorkGoogle Scholar
  4. Günther H (1983) NMR-Spektroskopie, 2. Aufl. Thieme, Stuttgart Deutsches Standardwerk für chemisch orientierte Anwendungen der 1H-NMR-SpektroskopieGoogle Scholar
  5. Shaw D (1976) Fourier transform NMR spectroscopy. Elsevier/North Holland, AmsterdamGoogle Scholar
  6. Slichter CP (1978) Principles of magnetic resonance. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar

Lehrbücher über biochemische Anwendungen der NMR-Spektroskopie

  1. Dwek RA (1973) Nuclear magnetic resonance in biochemistry. Oxford University Press, LondonGoogle Scholar
  2. Govil G, Hosur RV (1982) NMR: Basic principles and progress, vo120: Conformation of biological molecules : New results from NMR. Springer, Berlin Heidelberg New YorkGoogle Scholar
  3. James TL (1975) Nuclear magnetic resonance in biochemistry: Principles and applications. Acade-mic Press, New YorkGoogle Scholar
  4. Jardetzky O, Roberts GCK (1981) NMR in molecular biology. Academic Press, New YorkGoogle Scholar
  5. Knowles PF, Marsh D, Rattle HWE (1976) Magnetic resonance of biomolecules. Wiley, LondonGoogle Scholar
  6. Opella SJ, Lu P (1979) NMR and biochemistry. Dekker, New York BaselGoogle Scholar
  7. Wüthrich K (1976) NMR in biological research: Peptides and proteins. North Holland, AmsterdamGoogle Scholar

Monographien und Fortschrittsberichte

  1. NMR in Biology. Dwek RA, Campbell ID, Richards RE, Williams RJP (eds) Academic Press, Lon-don,1977Google Scholar
  2. Biological applications of magnetic resonance. Shulman RG Academic Press, New York, 1979Google Scholar
  3. NMR of intact biological systems. Williams RJP, Andrew ER, Radda GK (eds) Philos Trans R Soc Lond [Biol] 289: 379–559 (1980)Google Scholar
  4. Magnetic resonance in biology. Cohen JS. Wiley&Sons, New York, 1980Google Scholar
  5. NMR in medicine. Damadian RR (Hrsg) Springer, Berlin Heidelberg New York, 1981Google Scholar
  6. Nuclear magnetic resonance and its applications to living systems. Gadian DG, Oxford University Press, Oxford, 1982Google Scholar
  7. Noninvasive probes of tissue metabolism. Cohen JS (ed) Wiley&Sons, New York, 1982Google Scholar

Übersichtsartikel über In-vivo-NMR-Spektroskopie

  1. Shulman RG et al. (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205: 160PubMedCrossRefGoogle Scholar
  2. Burt CT, Cohen SM, Barany M (1979) Analysis of intact tissue with 31P NMR. Annu Rev Biophys Bioeng 8: 1PubMedCrossRefGoogle Scholar
  3. Hollis DP (1980) Phosphorus NMR of cells, tissues and organelles. Biol Magn Reson 2: 1CrossRefGoogle Scholar
  4. O’Neill IK, Richards CP (1980) Biological phosphorus-31 NMR spectroscopy. Annu Rep NMR Spectr 10A: 133CrossRefGoogle Scholar
  5. Gadian DG, Radda GK (1981) NMR studies of tissue metabolism. Annu Rev Biochem 50: 69PubMedCrossRefGoogle Scholar
  6. Shaw D (1981) In vivo chemistry with NMR. In: Kaufman L, Crooks LE, Margulis AR (eds) Nucl. Magn. Reson. Imaging Med. IgakuShoin, Tokyo, pp 147–183Google Scholar
  7. Roberts JKM, Jardetzky O (1981) Monitoring of cellular metabolism by NMR. Biochim Biophys Acta 639: 53PubMedCrossRefGoogle Scholar
  8. Iles RA, Stevens AN (1982) NMR studies of metabolites in living tissue. Prog Nucl Magn Reson Spectrosc 15: 49CrossRefGoogle Scholar
  9. Gronenborn A, Roth K (1982) NMR-Spektroskopie in vivo. Chem i. U. Zeit 16: 1CrossRefGoogle Scholar
  10. Gordon RE, Hanley PE, Shaw D (1982) Topical magnetic resonance. Prog Nucl Magn Reson Spec-trosc 15: 1CrossRefGoogle Scholar
  11. Bradbury EM, Radda GK (1983) NMR techniques in medicine. Ann Intern Med 98: 514PubMedCrossRefGoogle Scholar
  12. Shulman RG (1983) NMR spectroscopy of living cells. Sci Am 248: 86PubMedCrossRefGoogle Scholar
  13. Shaw D (1983) In vivo topical magnetic resonance. Org Magn Reson 21: 225CrossRefGoogle Scholar

Ausgewählte Originalpublikationen He—

  1. Studies of acidosis in the ischemic heart by phosphorus NMR. Garlick P, Radda GK, Seeley JP, Biochem J 184: 547 (1979)PubMedGoogle Scholar
  2. NMR studies of cancer and heart disease. Hollis DP, Bull Magn Reson 1: 27 (1979)Google Scholar
  3. NMR of phosphorus in the perfused heart. Hollis DP, IEEE Trans Nucl Sci 27: 1250 (1980)CrossRefGoogle Scholar
  4. Phosphorus-31 NMR studies of the energetic state and intracellular pH of the isolated rat heart during ischemia. Rossi A et al., J Physiol (Paris) 76: 902 (1980)Google Scholar
  5. Studies of metabolism in the isolated, perfused rat heart using carbon-13 NMR. Bailey IA et al., FEBS Lett 123: 315 (1981)PubMedCrossRefGoogle Scholar
  6. The effects of reperfusion on the phosphorus-31 NMR spectrum of ischemic rat hearts. Bailey IA et al., Biochem Soc Trans 9: 234 (1981)Google Scholar
  7. A phosphorus-31 NMR study of the effects ofreflow on the ischemic rat heart. Bailey IA et al., Biochim Biophys Acta 637: 1 (1981)PubMedCrossRefGoogle Scholar
  8. A phosphorus-31 NMR study of metabolism in the hypoxic perfused rat heart. Matthews PM, Biochem Soc Trans 9: 236 (1981)Google Scholar
  9. The steady-state rate of ATP synthesis in the perfused rat heart measured by phosphorus-31 NMR saturation transfer. Matthews PM et al., Biochem Biophys Res Commun 103: 1052 (1981)PubMedCrossRefGoogle Scholar
  10. Measurement offree magnesium in perfused and ischemic arrested heart muscle. A quantitative phosphorus-31 NMR and multiequilibrium analysis. Wu ST et al., Biochemistry 20: 7399 (1981)PubMedCrossRefGoogle Scholar
  11. Gated Sodium-23 NMR images of an isolated perfused working rat heart. DeLayre IL et al., Science 212: 935 (1981)PubMedCrossRefGoogle Scholar
  12. A phosphorus-31 NMR study of the metabolic andfunctional effects ofchanges in extracellular calcium on the isolated perfused rat heart. Seymour AM et al., Biochem Soc Trans 9: 475 (1981)Google Scholar
  13. Assessment ofpharmacological treatment of myocardial infarction by phosphorus-31 with surface coils. Nunnally RL, Bottomley PA, Science 211: 177 (1981)PubMedCrossRefGoogle Scholar
  14. A phosphorus-31 NMR saturation transfer study of the regulation of creatine kinase in the rat heart. Matthews PM, Biochim Biophys Acta 721: 312 (1982)PubMedCrossRefGoogle Scholar
  15. Effects of l- and d-propranolol on the ischemic myocardial metabolism of the isolated guinea pig heart, as studied by phosphorus-31 NMR. Nakazawa M et al., J Cardiovasc Pharmacol 4: 700 (1982)PubMedCrossRefGoogle Scholar
  16. The effects of insulin on myocardial metabolism and acidosis in normoxia and ischemia. A phosphorus31 NMR study. Bailey IA, Biochim Biophys Acta 720: 17 (1982)PubMedCrossRefGoogle Scholar
  17. Phosphorus NMR spectroscopy of cardiac and skeletal muscles. Ingwall JS, Am J Physiol 242: H729 (1982)Google Scholar
  18. In vivo carbon-13 NMR studies of heart metabolism. Neurohr KJ et al., Proc Natl Acad Sci USA 80: 1603 (1983)PubMedCrossRefGoogle Scholar

Niere

  1. Study of rat kidney in vivo during hypovolemic shock by 3'P--NMR. Chan L et al., Biochem Soc Trans 9: 239 (1981)Google Scholar
  2. Phosphorus NMR study of the rat kidney in vivo. Balaban RS et al., Kidney Int 20: 575 (1981)PubMedCrossRefGoogle Scholar
  3. The role of intrarenal pH in regulation of ammoniagenesis: 31 P-NMR studies of the isolated perfused rat kidney. Ackerman JJH et al., J Physiol (Lond) 319: 65 (1981)Google Scholar

Leber

  1. Phosphorus-31 NMR analysis of the renal response to respiratory acidosis. Freeman D et al., Biochem Soc Trans 10: 399 (1982)Google Scholar
  2. Energetics of sodium transport in the kidney. Saturation transfer phosphorus-31 NMR. Freeman D et al., Biochim Biophys Acta 762: 325 (1983)PubMedCrossRefGoogle Scholar
  3. Phosphorus-31 NMR studies on membrane phospholipids in microsomes, rat liver slices and intact perfused rat liver. Kruijff BDe et al., Biochim Biophys Acta 600: 343 (1980)PubMedCrossRefGoogle Scholar
  4. Effects offructose on the energy metabolism and acid-base status of the perfused starved-rat liver: A31 P-NMR study. Iles RA et al., Biochem J 192: 191 (1980)PubMedGoogle Scholar
  5. Direct proton and natural abundance carbon-13 NMR observation of liver changes induced by ethionine. Block RE, Biochem Biophys Res Commun 108: 940 (1982)PubMedCrossRefGoogle Scholar
  6. Metabolic interrelationships of intracellular pH measured by double-barrelled microelectrodes in perfused rat liver. Cohen RD et al., J Physiol (Lond) 330: 69 (1982)Google Scholar
  7. Hepatic metabolism by phosphorus-31 NMR. Iles RA, Griffiths JR, Biosci Rep 2: 735 (1982)PubMedCrossRefGoogle Scholar

Muskelgewebe

  1. Studies of the biochemistry of contracting and relaxing muscle by the use of 31 P-NMR in conjunction with other techniques. Dawson MJ et al., Philos Trans R Soc Lond [Biol] 289: 445 (1980)CrossRefGoogle Scholar
  2. Natural abundance carbon-13 NMR spectra of intact muscle. Doyle DD et al., FEBS Lett 131: 147 (1981)PubMedCrossRefGoogle Scholar
  3. High-resolution proton magnetic resonance spectra of muscle. Yoshizaki K et al., Biochim Biophys Acta 678: 283 (1981)PubMedCrossRefGoogle Scholar
  4. Phosphorus-31 NMR studies of energy metabolism and tissue pH in ischemic rat leg. Thulborn KR, Biochem Soc Trans 9: 237 (1981)Google Scholar
  5. Mitochondrial regulation of phosphocreatin/inorganic phosphate ratio in exercising human muscle: A gated phosphorus-31 NMR study. Chance B et al., Proc Natl Acad Sci USA 78: 6714 (1981)PubMedCrossRefGoogle Scholar
  6. NMR analysis of intact tissue including several examples of normal and diseased human muscle deter-minations. Glonek T et al., NMR in Medicine, Damadian R (ed) Springer, Berlin Heidelberg New York, 1980Google Scholar
  7. Simultaneous in vivo measurement of oxygen utilization and high-energy phosphate metabolism in rab-bit skeletal muscle by Multinuclear proton and phosphorus-31 NMR. Thulborn KR et al., J Magn Reson 45: 362 (1981)Google Scholar
  8. Generation of phosphodiesters during fast-to-slow muscle transformation. A phosphorus-31 NMR study. Burt CT et al., Biochim Biophys Acta 721: 492 (1982)PubMedCrossRefGoogle Scholar
  9. Phosphorus-31 NMR of contractile systems. Barany M, Glonek T, Methods Enzymol 85:624 (1982)PubMedCrossRefGoogle Scholar
  10. Application of phosphorus-31 NMR spectroscopy to the study of striated muscle metabolism. Meyer RA et al., Am J Physiol 242: C 1 (1982)Google Scholar
  11. Phosphorus-31 NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Chance B et al., Proc Natl Acad Sci USA 79: 7714 (1982)PubMedCrossRefGoogle Scholar
  12. Preliminary observations on the metabolic responses to exercise in humans, using phosphorus-31 NMR. Ross BD et al., Ciba Found Symp 87: 145 (1982)PubMedGoogle Scholar
  13. Nuclear magnetic resonance studies of forearm muscle in Duchenne dystrophy. Newman RJ et al., Br Med I 284: 1072 (1982)CrossRefGoogle Scholar
  14. Clinical use of NMR in the investigation of myopathy. Edwards RHT et al., Lancet I: 725 (1982)CrossRefGoogle Scholar
  15. Quantitation of lactid acid in caffeine-contracted and resting frog muscle by high resolution natural abundance carbon-13 NMR. Doyle DD, Barany M, FEBS Lett 140:237 (1982)PubMedCrossRefGoogle Scholar

Gehirn

  1. Localized noninvasive detection and description of ischemic cerebral damage using NMR. Fossel ET, Ingwall JS. Cerebrovasc Dis 12: 91 (1981)Google Scholar
  2. Cerebral energy metabolism in rats studied by phosphorus nuclear magnetic resonance using surface coils. Bottomlev PA et al., Magn Reson Imaging 1: 81 (1982)CrossRefGoogle Scholar
  3. Phosphorus-31 NMR saturation transfer measurements of the steady state rates of creatin kinase and ATPsynthease in the rat brain. Shoubridge EA et al., FEBS Lett 140: 288 (1982)CrossRefGoogle Scholar
  4. Developmental changes of creatine kinase metabolism in rat brain. Nowood WI et al., Am J Physiol 244: C205 (1983)Google Scholar
  5. In vivo phosphorus-31 NMR studies on experimental cerebral infarction. Naruse S et al., Jpn J Physiol 33: 19 (1983)PubMedCrossRefGoogle Scholar
  6. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Cady EB et al., Lancet 1(8333): 1059 (1983)PubMedCrossRefGoogle Scholar
  7. Structure and metabolism of mammalian liver glycogen monitored by carbon-13 nuclear magnetic resonance. Sillerud LO, Shulman RG, Biochemistry 22: 1087 (1983)PubMedCrossRefGoogle Scholar

Tumorgewebe

  1. Use of the NMR of nuclei other than proton in tumor studies. Granger P, J Biophys Med Nuc 15:137 (1981)Google Scholar
  2. Phosphorus-31 NMR investigation of solid tumors in the living rat. Griffiths JR et al., Biosci Rep 1: 319 (1981)PubMedCrossRefGoogle Scholar
  3. Human tumors as examined by in vivo phosphorus-31 NMR in athymic mice. Evanochko WT et al., Biochem Biophys Res Commun 109: 1346 (1982)PubMedCrossRefGoogle Scholar
  4. Phosphorus-31 NMR spectroscopy of in vivo tumors. Ng TC et al., J Magn Reson 49: 271 (1982)Google Scholar
  5. NMR studies of tumors. Griffiths JR, Iles RA, Biosci Rep 2: 719 (1982)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Klaus Roth
    • 1
  1. 1.Fachbereich Chemie, Institut für Organische ChemieFreien Universität BerlinBerlin 33Deutschland

Personalised recommendations