Preliminaries

  • Jacek Blazewicz
  • Klaus Ecker
  • Günter Schmidt
  • Jan Wȩglarz

Abstract

In this chapter we provide the reader with basic notions used throughout the book. After a short introduction into sets and relations, decision problems, optimization problems and the encoding of problem instances are discussed. The way algorithms will be represented, and problem membership of complexity classes are other issues that are essential because algorithms for scheduling problems and their properties will be discussed from the complexity point of view. Afterwards graphs, especially certain types such as precedence graphs and networks that are important for scheduling problems, are presented. The last two sections deal with algorithmic methods used in scheduling such as enumerative algorithms (e. g. dynamic programming and branch and bound) and heuristic approaches.

Keywords

Transportation Sorting Boulder Cardi 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agi66.
    N. Agin, Optimum seeking with branch and bound, Management Sci. 13, 1966, B176–185.CrossRefGoogle Scholar
  2. AHU74.
    A. V. Aho, J. E. Hoperoft, J. D. Ullman, The Design and Analysis of Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.Google Scholar
  3. AK90.
    E. Aarts, J. Korst, Simulated Annealing and Boltzmann Machines, John Wiley & Sons, New York, 1990.Google Scholar
  4. AMO89.
    R. K. Ahuja, T. L. Magnanti, J. B. Orlin, Network Flows, MIT, Sloan School Working Paper No. 2059–88, 1989.Google Scholar
  5. Bak74.
    K. Baker, Introduction to Sequencing and Scheduling, J. Wiley, New York, 1974.Google Scholar
  6. BD62.
    R. Bellman, S. E. Dreyfus, Applied Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1962.Google Scholar
  7. Be157.
    R. Bellman, Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1957.Google Scholar
  8. Che77.
    B. V. Cherkasskij, Algoritm postrojenija maksimalnogo potoka w sieti so sloznostju 0(V2E1/2) operacij, Matematiczeskije Metody Reszenija Ekonomiczeskich Problem 7, 1977, 117–125.Google Scholar
  9. Che80.
    T.-Y. Cheung, Computational comparison of eight methods for the maximum network flow problem, ACM Trans. Math. Software 6, 1980, 1–16.CrossRefGoogle Scholar
  10. CHW87.
    M. Chains, A. Hertz, D. de Werra, Some experiments with simulated annealing for colouring graphs, European J. Oper. Res. 32, 1987, 260–266.CrossRefGoogle Scholar
  11. Cof76.
    E. G. Coffman, Jr. (ed.), Scheduling in Computer and Job Shop Systems, J. Wiley, New York, 1976.Google Scholar
  12. Coo71.
    S. A. Cook, The complexity of theorem proving procedures, Proc. 3rd ACM Symposium on Theory of Computing, 1971, 151–158.Google Scholar
  13. Den82.
    E. V. Denardo, Dynamic Programming: Models and Applications. Prentice-Hall, Englewood Cliffs, New Jersey, 1982.Google Scholar
  14. Din70.
    E. A. Dinic Algorism reszenija zadaczi o maksimalnom potokie w sieti so stepennoj ocenkoj, Dokl. Akad. Nauk SSSR 194, 1970, 1277–1280.Google Scholar
  15. DL79.
    S. E. Dreyfus, A. M. Law, The Art and Theory of Dynamic Programming, Adademic Press, New York, 1979.Google Scholar
  16. Edm65.
    J. Edmonds, Paths, trees and flowers, Canadian J. Math. 17, 1965, 449–467.CrossRefGoogle Scholar
  17. EK72.
    J. Edmonds, R. M. Karp, Theoretical improvement in algorithmic efficiency for network flow problem, J. Assoc. Comput. Mach. 19, No. 2, 1972, 248–264.CrossRefGoogle Scholar
  18. Eve79.
    S. Even, Graph Algorithms, Computer Science Press Inc., New York, 1979.Google Scholar
  19. FF62.
    L. R. Ford, Jr., D. R. Fulkerson, Flows in Networks, Princeton University Press, Princeton, New Jersey, 1962.Google Scholar
  20. GJ78.
    M. R. Garey, D. S. Johnson, Strong NP-completeness results: motivation, examples, and implications, J. Assoc. Comput. Mach. 25, 1978, 499–508.CrossRefGoogle Scholar
  21. GJ79.
    M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.Google Scholar
  22. Glo85.
    F. Glover, Future paths for integer programming and links to artificial intelligence, CAM Report 85–8, Univertisy of Colorado, Boulder, 1985.Google Scholar
  23. Glo89.
    F. Glover, Tabu-search–Part I, ORSA J. Comput. 1, 1989, 190–206.CrossRefGoogle Scholar
  24. Haj88.
    B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13, 1988, 311–329.CrossRefGoogle Scholar
  25. How69.
    R. A. Howard, Dynamic Programming and Markov Processes, MIT Press, Cambridge, Massachusetts, 1969.Google Scholar
  26. HW88.
    A. Hertz, D. de Werra, The tabu search metaheuristics: How we used it, Report ORWP 88/13, Département de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1988.Google Scholar
  27. Joh90.
    D. S. Johnson, A Catalog of Complexity Classes, in: J. van Leeuwen (ed.), Handbook of Theoretical Computer Science, Elsevier, New York, 1990, Ch. 2.Google Scholar
  28. Kar72.
    R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller, J. W. Thatcher (eds.), Complexity of Computer Computation, Plenum Press, New York, 1972, 85–104.CrossRefGoogle Scholar
  29. Kar74.
    A. W. Karzanov, Nachozdenije maksimalnogo potoka w sieti metodom predpotokow, Dokl. Akad. Nauk SSSR 215, 1974, 434–437.Google Scholar
  30. KGV83.
    S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, IBM Research Report RC 9355, 1982, and Science 220, 1983, 671–680.Google Scholar
  31. Kub87.
    M. Kubale, The complexity of scheduling independent two-processor tasks on dedicated processors, Inform. Proc. Lett. 24, 1987, 141–147.CrossRefGoogle Scholar
  32. Law76.
    E. L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston, New York, 1976.Google Scholar
  33. Len77.
    J. K. Lenstra, Sequencing by Enumerative Methods, Mathematical Centre Tracts 69, Amsterdam, 1977.Google Scholar
  34. LA89.
    P. J. M. van Laarhoven, E. H. L. Aarts, Simulated Annealing: Theory and Applications, Kluwer, Dortrecht, 1989.Google Scholar
  35. LRKB77.
    J. K. Lenstra, A. H. G. Rinnooy Kan, P. Brucker, Complexity of machine scheduling problems, Ann. Discrete Math. 1, 1977, 343–362.CrossRefGoogle Scholar
  36. LW66.
    E. L. Lawler, D. E. Wood, Branch and bound methods: a survey, Oper. Res. 14, 1966, 699–719.CrossRefGoogle Scholar
  37. Mit70.
    L. G. Mitten, Branch-and-bound methods: general formulation and properties, Oper. Res. 18, 1970, 24–34.CrossRefGoogle Scholar
  38. Rin76.
    A. H. G. Rinnooy Kan, Machine Scheduling Problems: Classification, Complexity and Computations. Martinus Nijhoff, The Hague, 1976.Google Scholar
  39. Rin87.
    A. H. G. Rinnooy Kan, Probabilistic analysis of approximation algorithms, Ann. Discrete Math. 31, 1987, 365–384.Google Scholar
  40. SVW80.
    E. A. Silver, R. V. Vidal, D. de Werra, A tutorial on heuristic methods, European J. Oper. Res. 5, 1980, 153–162.CrossRefGoogle Scholar
  41. VTL82.
    J. Valdes, R. E.Tarjan, E. L. Lawler, The recognition of series parallel digraphs, SIAM J. Comput. 11, 1982, 298–313.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1993

Authors and Affiliations

  • Jacek Blazewicz
    • 1
  • Klaus Ecker
    • 2
  • Günter Schmidt
    • 3
  • Jan Wȩglarz
    • 1
  1. 1.Instytut InformatykiPolitechnika PoznanskaPoznańPoland
  2. 2.Institut für InformatikTechnische Universität ClausthalClausthal-ZellerfeldGermany
  3. 3.Rechts- und Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre insbesondere Wirtschaftsinformatik IIUniversität des SaarlandesSaarbrückenGermany

Personalised recommendations