Skip to main content

Structured Flows on Manifolds as guiding concepts in brain science

  • Chapter
  • First Online:
Selbstorganisation – ein Paradigma für die Humanwissenschaften

Zusammenfassung

Any discussion of brain repair, rehabilitation, and functional recovery imperatively requires a working definition of “function” (Jirsa et al. 2019). If such definition is not explicitly provided, which is more common than not, then the precedent statement still remains valid and is implied by the choice of methods applied in the investigation. An illustrative and recent example is the use of resting state paradigms in modern neuroscience, in which spatiotemporal brain activity is recorded using neuroimaging techniques such as functional MRI or EEG and then cast into a measure, e.g., functional connectivity, which captures the Pearson correlation of brain activations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aerts, H., Schirner, M., Jeurissen, B., Van Roost, D., Achten, E., Ritter, P., & Marinazzo, D. (2018). Modeling Brain Dynamics in Brain Tumor Patients Using the Virtual Brain. Eneuro, 5(3). https://doi.org/10.1523/eneuro.0083-18.2018.

  • Beer, R. D., Chiel, H. J., Gallagher, J. C. (1999). Evolution and analysis of model CPGs for walking: ii. general principles and individual variability. Journal of Computational Neuroscience, 7, 119–147. PMID: 10515251.

    Google Scholar 

  • Changeux, J.-P., Courrege, P., & Danchin, A. (1973). A Theory of the Epigenesis of Neuronal Networks by Selective Stabilization of Synapses. Proceedings of the National Academy of Sciences, 70(10), 2974–2978. https://doi.org/10.1073/pnas.70.10.2974.

  • Chiel, H. J., Beer, R. D., Gallagher, J. C. (1999). Evolution and analysis of model CPGs for walking: I. dynamical modules. Journal of Computational Neuroscience, 7, 99–118. PMID: 10515250.

    Google Scholar 

  • Deco, G., Jirsa, V., McIntosh, A. R., Sporns, O., & Kotter, R. (2009). Key role of coupling, delay, and noise in resting brain fluctuations. Proceedings of the National Academy of Sciences, 106(25), 10302–10307. https://doi.org/10.1073/pnas.0901831106.

  • Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest: computational insights into potential cognitive architectures. Trends in neurosciences, 36(5), 268-274.

    Google Scholar 

  • Edelman, G. M., & Gally, J. A. (2001). Degeneracy and complexity in biological systems. Proceedings of the National Academy of Sciences, 98(24), 13763–13768. https://doi.org/10.1073/pnas.231499798.

  • Falcon, M. I., Jirsa, V., & Solodkin, A. (2016a). A new neuroinformatics approach to personalized medicine in neurology: The Virtual Brain. Current opinion in neurology, 29(4), 429.

    Google Scholar 

  • Falcon, M. I., Riley, J. D., Jirsa, V., McIntosh, A. R., Chen, E. E., & Solodkin, A. (2016b). Functional mechanisms of recovery after chronic stroke: modeling with the Virtual Brain. Eneuro. https://doi.org/10.1523/ENEURO.0158-15.2016.

  • Frégnac, Y. (2017). Big data and the industrialization of neuroscience: a safe roadmap for understanding the brain? Science, 358, 470–477. https://doi.org/10.1126/science.aan8866-

  • Fuchs, A., Jirsa, V. K., & Kelso, J. A. (2000a). Issues in the coordination of human brain activity and motor behavior. Neuroimage, 11, 375-377.

    Google Scholar 

  • Fuchs, A., Jirsa, V. K., & Kelso, J. S. (2000b). Theory of the relation between human brain activity (MEG) and hand movements. Neuroimage, 11(5), 359-369.

    Google Scholar 

  • Haken, H. (1983). Synergetics, an Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology New York: Springer.

    Google Scholar 

  • Hansen, E. C., Battaglia, D., Spiegler, A., Deco, G., & Jirsa, V. K. (2015). Functional connectivity dynamics: modeling the switching behavior of the resting state. Neuroimage, 105, 525-535.

    Google Scholar 

  • Huys, R., Perdikis, D., & Jirsa, V. K. (2014). Functional architectures and structured flows on manifolds: A dynamical framework for motor behavior. Psychological review, 121(3), 302.

    Google Scholar 

  • Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical review, 106(4), 620.

    Google Scholar 

  • Jirsa, V. K., & Kelso, J. S. (2000). Spatiotemporal pattern formation in neural systems with heterogeneous connection topologies. Physical Review E, 62(6), 8462-8465.

    Google Scholar 

  • Jirsa, V. K., Jantzen, K. J., Fuchs, A., & Kelso, J. S. (2002). Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE transactions on medical imaging, 21(5), 493-504.

    Google Scholar 

  • Jirsa, V. K., McIntosh, A. R., Huys, R. (2019). Grand Unified Theories of the brain need better understanding of behavior: the two-tiered emergence of function. Ecological psychology, 31(3), 152-165.

    Google Scholar 

  • Levitis, D. A., Lidicker Jr, W. Z., & Freund, G. (2009). Behavioural biologists do not agree on what constitutes behaviour. Animal behaviour, 78(1), 103-110.

    Google Scholar 

  • Pillai, A. S., & Jirsa, V. K. (2017). Symmetry Breaking in Space-Time Hierarchies Shapes Brain Dynamics and Behavior. Neuron, 94(5), 1010–1026. https://doi.org/10.1016/j.neuron.2017.05.013.

  • Prinz, A. A., Bucher, D., Marder, E. (2004). Similar network activity from disparate circuit parameters. NatureNeuroscience, 7, 1345–1352. https://doi.org/10.1038/nn1352.

  • Proix, T., Bartolomei, F., Guye, M., Jirsa, V. K. (2017). Individual brain structure and modeling predict seizure propagation. Brain, 140(3), 641-654.

    Google Scholar 

  • Schirner, M., McIntosh, A. R., Jirsa, V., Deco, G., & Ritter, P. (2018). Inferring multi-scale neural mechanisms with brain network modelling. Elife, 7, e28927.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Jirsa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jirsa, V. (2020). Structured Flows on Manifolds as guiding concepts in brain science. In: Viol, K., Schöller, H., Aichhorn, W. (eds) Selbstorganisation – ein Paradigma für die Humanwissenschaften. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-29906-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-29906-4_6

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-29905-7

  • Online ISBN: 978-3-658-29906-4

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics