Skip to main content

Degenerating U-Net on Retinal Vessel Segmentation

What Do We Really Need?

  • Conference paper
  • First Online:
Bildverarbeitung für die Medizin 2020

Part of the book series: Informatik aktuell ((INFORMAT))

Zusammenfassung

Retinal vessel segmentation is an essential step for fundus image analysis. With the recent advances of deep learning technologies, many convolutional neural networks have been applied in this field, including the successful U-Net. In this work, we firstly modify the U-Net with functional blocks aiming to pursue higher performance. The absence of the expected performance boost then lead us to dig into the opposite direction of shrinking the U-Net and exploring the extreme conditions such that its segmentation performance is maintained. Experiment series to simplify the network structure, reduce the network size and restrict the training conditions are designed. Results show that for retinal vessel segmentation on DRIVE database, U-Net does not degenerate until surprisingly acute conditions: one level, one filter in convolutional layers, and one training sample. This experimental discovery is both counter-intuitive and worthwhile. Not only are the extremes of the U-Net explored on a well-studied application, but also one intriguing warning is raised for the research methodology which seeks for marginal performance enhancement regardless of the resource cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Maier A, Syben C, Lasser T, et al. A gentle introduction to deep learning in medical image processing. Zeitschrift für Medizinische Physik. 2019;.

    Google Scholar 

  2. Fu H, Xu Y, Wong DWK, et al. Retinal vessel segmentation via deep learning network and fully-connected conditional random fields. In: ISBI; 2016. .

    Google Scholar 

  3. Fu W, Breininger K, Schaffert R, et al. A divide-and-conquer approach towards understanding deep networks. MICCAI. 2019;.

    Google Scholar 

  4. Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: MICCAI; 2015. .

    Google Scholar 

  5. Isensee F, Petersen J, Klein A, et al. NnU-Net: self-adapting framework for u-netbased medical image segmentation. arXiv:180910486. 2018;.

  6. Zhou Z, Siddiquee MMR, et al. Unet++: a nested u-net architecture for medical image segmentation. In: DLMIA; 2018. .

    Google Scholar 

  7. Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks. In: CVPR; 2017. .

    Google Scholar 

  8. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition. In: CVPR; 2016. .

    Google Scholar 

  9. Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. In: Proc IEEE Int Conf Comput Vis; 2017. .

    Google Scholar 

  10. Kingma DP. Adam: A method for stochastic optimization. arXiv:14126980. 2014;.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fu, W., Breininger, K., Pan, Z., Maier, A. (2020). Degenerating U-Net on Retinal Vessel Segmentation. In: Tolxdorff, T., Deserno, T., Handels, H., Maier, A., Maier-Hein, K., Palm, C. (eds) Bildverarbeitung für die Medizin 2020. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-29267-6_7

Download citation

Publish with us

Policies and ethics