Skip to main content

Stabilisierung durch Wandkonturierung, „Endwall treatment“

  • Chapter
  • First Online:
Aerodynamik axialer Turbokompressoren
  • 2633 Accesses

Zusammenfassung

Die instationäre und dreidimensionale Strömung durch die Verdichterbeschaufelung ist bei der Auslegung der Kanalgeometrie zu berücksichtigen. Die Auslegung der Beschaufelung mit großem Streckungsverhältnis legt zwar die Trennung in die Beschreibung der Kanalströmung als Kaskade und als Meridianströmung nahe, wie von Wu [1] eingeführt wurde. Mit geringeren Streckungsverhältnissen ist die dreidimensionale Wechselwirkung bei dieser getrennten Behandlung jedoch immer schlechter beschreibbar. Bei hohen Belastungen der Profile können die Eckenwirbel aufgrund des umfangsmäßigen Druckgradienten zwei Drittel der Kanalhöhe umfassen, so dass die Blockage und die Verluste stark ansteigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Wu C-H (1952) A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types, NACA TN 2604

    Google Scholar 

  2. Hoeger M, Sievers N, Lawerenz M (2001) On the performance of compressor blades with contoured endwalls. In: Proceedings of 4th european conference on turbomachinery: fluid dynamics and thermodynamics, Florence, Italy, S 711–722.

    Google Scholar 

  3. Chen PP, Qiao WY, Hashimu SFA, Shi PJ, Zhao L (2011) Passive control of hub-corner separation/stall using axisymmetric-Hub contouring. Proc Inst Mech Eng G J Aerosp Eng 226(10):1214–1224

    Article  Google Scholar 

  4. Reising S, Schiffer HP (2009) Non-axisymmetric end wall profiling in transonic compressors. part 1: improving the static pressure recovery at off-design conditions by sequential hub and shroud end wall profiling. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2009-59133, Barcelona, Spain, 8–11 May

    Google Scholar 

  5. Li X, Chu W, Wu Y (2014) Numerical investigation of inlet boundary layer skew in axial-flow compressor cascade and the corresponding non-axisymmetric end wall profiling. Proc Inst Mech Eng A J Power Energy 228(6):638–656

    Article  Google Scholar 

  6. Zhang Y, Li J, Ji L (2017) Numerical research on effects of shroud concentration on tip leakage flow and overall performance of axial compressors. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-63468, Charlotte, USA, 26–30 June

    Google Scholar 

  7. Harvey NW (2008) Some effects of non-axisymmetric endwall profiling on axial flow compressor aerodynamics, part I: linear cascade investigation. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, paper GT2008-50990, Berlin, Germany, 9–13 June

    Google Scholar 

  8. Harvey NW, Offord TP (2008) Some effects of non-axisymmetric endwall profiling on axial flow compressor aerodynamics, part II: multi-stage HPC CFD-study. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, Paper GT2008-50991, Berlin, Germany, 9–13 June

    Google Scholar 

  9. Reising, S (2011) Steady and unsteady performance of a transonic compressor stage with non-axisymmetric end walls. PhD thesis, TU Darmstadt

    Google Scholar 

  10. Nerger D, Saathoff H, Radespiel R, Gümmer V, Clement C (2012) Experimental investigation of endwall and suction side blowing in a highly loaded compressor stator cascade. ASME J Turbomach 134(2):021010

    Article  Google Scholar 

  11. Hecklau M, Gmelin C, Nitsche W, Thiele F, Huppertz A, Swoboda M (2011) Experimental and numerical results of active flow control on a highly loaded stator cascade. Proc Inst Mech Eng A J Power Energy 225(7):907–918

    Article  Google Scholar 

  12. Gill A, von Backström TW, Harms TM (2014) Flow fields in an axial flow compressor during four-quadrant operation. ASME J Turbomach 136(6):061007

    Article  Google Scholar 

  13. Dorfner C, Nicke E, Voss C (2007) Axis-asymetric profiled endwall design using multiobjective optimization linked with 3D RANS-flow-simulations. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27268, Montreal, Canada, 14–17 May 2007

    Google Scholar 

  14. Hoynacki A (1999a) Einfluss von instationärer Strömung und Turbulenz auf die Grenzschicht und auf die Druckverteilungen von Beschaufelungen moderner mehrstufiger Verdichter. Abschlussbericht Vorhaben Nr. 601, Forschungsvereinigung Verbrennungskraftmaschinen e. V.

    Google Scholar 

  15. Hoynacki A (1999b) Experimentelle Untersuchung instationärer Strömungsvorgänge in einem dreistufigen Axialverdichter mit CDA-Beschaufelung. Dissertation, Institut für Strahlantriebe und Turbomaschinen, RWTH Aachen

    Google Scholar 

  16. Bohne A (2001) Mehrstufiger Axialverdichter mit CDA-Beschaufelung. Abschlussbericht Vorhaben Nr. 694, Forschungsvereinigung Verbrennungskraftmaschinen e. V.

    Google Scholar 

  17. Heinichen F, Gümmer V, Plas A, Schiffer HP (2011) Numerical investigation of the influence of non-axisymmetric hub contouring on the performance of a shrouded axial compressor stator. CEAS Aeronaut J 2(1):89–98

    Article  Google Scholar 

  18. Harvey NW (2008) Some effects of non-axisymmetric end wall profiling on axial flow compressor aerodynamics. Part I: linear cascade investigation. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, paper GT2008-50990, Berlin, Germany, 9–13 June

    Google Scholar 

  19. Hergt A, Meyer R, Liesner K, Nicke E (2011) A new approach for compressor endwall contouring. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45858, Vancouver, British Columbia, Canada, 6–10 June

    Google Scholar 

  20. Dorfner C, Hergt A, Nicke E, Moenig R (2010) Advanced non-axisymmetric endwall contouring for axial compressors by generating an aerodynamic separator – part I: principal cascade design and compressor application. ASME J Turbomach 122(2):021026

    Article  Google Scholar 

  21. Reutter O, Hervé S, Nicke E (2009) Automated optimization of the non-axisymmetric hub endwall of the rotor of an axial compressor. In: Proceeding of the 10th European conference on turbomachinery, Lappeenranta, Finland, S 1–11

    Google Scholar 

  22. Yi W, Li J, Yu J, Ji L (2016) Investigation on the effect of streamwise grooves on controlling corner flow separation. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-58141, Seoul, South Korea, 13–17 June

    Google Scholar 

  23. Lei V-M, Spakovszky ZS, Greitzer EM (2008) A criterion for axial compressor hub-corner stall. ASME J Turbomach 130(3):031006

    Article  Google Scholar 

  24. Obaida HMB, Kawase M, Rona A, Gostelow JP (2016) Some perspectives on the treatment of three-dimensional flows on axial compressor blading. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57617, Seoul, South Korea, 13–17 June

    Google Scholar 

  25. Goinis G, Nicke E (2016) Optimizing surge margin and efficiency of a transonic compressor. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-7896, Seoul, South Korea, 13–17 June

    Google Scholar 

  26. Greitzer EM, Nikkanen JP, Haddad DE, Mazzawy RS, Joslyn HD (1979) A fundamental criterion for the application of rotor casing treatment. ASME J Fluids Eng 101:237–243

    Article  Google Scholar 

  27. Wilke I, Kau H-P (2004a) A numerical investigation of the flow mechanisms in a HPC front stage with axial slots. ASME J Turbomach 126:339

    Article  Google Scholar 

  28. Wilke I, Kau H-P (2004b) Stall margin enhancing flow mechanisms in a transonic compressor stage with axial slots. In: Proceedings of the 10th of ISROMAC 2004, paper ISROMAC10-2004-006, Honolulu, Hawaii, 7–11 March

    Google Scholar 

  29. Wilke I, Kau H-P (2001) Wechselwirkung zwischen Rotorströmung und Casing Treatment. DGLR Jahrestagung, DGLR-JT2001-084

    Google Scholar 

  30. Wilke I, Kau H-P (2002) A numerical investigation of the influence of casing treatments on the tip leakage flow in a HPC front stage. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30642, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  31. Wilke I, Kau H-P (2003) A numerical investigation of the flow mechanisms in a HPC front stage with axial slots. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38481, Atlanta, Georgia, USA, 16–19 June

    Google Scholar 

  32. Hofmann W, Ballmann J (2002) Tip clearance vortex development and shock-vortex-interaction in a transonic axial compressor rotor. In: Proceedings of 40th AIAA aerospace sciences meeting & exhibit, paper AIAA 2002-0083, Reno, NV, USA, 14–17 January

    Google Scholar 

  33. Hofmann W, Ballmann J (2003) Some aspects of tip vortex behavior in a transonic turbo compressor. Conference Paper ISABE-2003-1223

    Google Scholar 

  34. Schlechtriem S, Lötzerich M (1997) Breakdown of tip leakage vortices in compressors at flow conditions close to stall. In: Proceedings of ASME 1997 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 97-GT-041, Orlando, Florida, USA, 2–5 June

    Google Scholar 

  35. Furukawa M, Inoue M, Saiki K, Yamada K (1998) The role of tip leakage vortex breakdown in compressor aerodynamics. In: Proceedings of ASME 1998 international gas turbine and aeroengine congress and exhibition, Bd 1: turbomachinery, paper 98-GT-239, Stockholm, Sweden, 2–5 June

    Google Scholar 

  36. Hoeger M, Fritsch G, Bauer D (1998) Numerical simulation of the shock tip leakage vortex interaction in a HPD-front stage. In: Proceedings of ASME 1998 international gas turbine and aeroengine congress and exhibition, Bd 1: turbomachinery, paper 98-GT-261, Stockholm, Sweden, 2–5 June

    Google Scholar 

  37. Takata H, Tsukuda Y (1977) Stall margin improvement by casing treatment – its mechanism and effectiveness. ASME J Eng Power 99(1):121–133

    Article  Google Scholar 

  38. Shabir A, Adamczyk IJ (2004) Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: turbo Expo 2004, parts A and B, paper GT2004-53903, Vienna, Austria, 14–17 June

    Google Scholar 

  39. Zhu J, Wu Y, Chu W (2005) Axial location of casing treatment in multistage axial flow compressor. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: turbo Expo 2005, parts A and B, paper GT2005-69105, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  40. Choi K-J, Kim J-H, Kim K-Y (2010) Design optimization of circumferential casing grooves for a transonic axial compressor to enhance stall margin. In: Proceedings of ASME Turbo Expo 2010: power for land, sea, and air, Bd 7: turbomachinery, parts A, B, and C, paper GT2010-22396, Glasgow, UK, 14–18 June, S 1–9

    Google Scholar 

  41. Carnie G, Wang Y, Qin N, Shahpar S (2011) Design optimisation of casing grooves using the zipper layer meshing method. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45483, Vancouver, British Columbia, Canada, 6–10 June

    Google Scholar 

  42. Houghton T, Day IJ (2011) Enhancing the stability of subsonic compressors using casing grooves. ASME J Turbomach 133(2):021007

    Article  Google Scholar 

  43. Houghton T, Day IJ (2012) Stability enhancement by casing grooves: the importance of stall inception mechanism and solidilty. ASME J Turbomach 134(2):021003

    Article  Google Scholar 

  44. Zhang HG, Tan F, Wu YH, Chu WL, Wang W (2016) Experimental and numerical investigation of effect of center offset degree on compressor stability with circumferential grooved casing treatment. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56757, Seoul, South Korea, 13–17 June

    Google Scholar 

  45. Rabe DC, Hah C (2002) Application of casing circumferential grooves for improved stall margin in a transonic axial compressor. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30641, Amsterdam, The Netherlands, 3–6 June, S 1141–1153

    Google Scholar 

  46. Perrot V, Touyeras A, Lucien G (2007) Detailed CFD analysis of a grooved casing treatment on an axial subsonic compressor. In: Proceedings of the 7th European conference on turbomachinery, S 305–316

    Google Scholar 

  47. Müller MW, Schiffer H-P, Hah C (2007) Effect of circumferential grooves on the aerodynamic performance of an axial single-stage transonic compressor. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27365, Montreal, Canada, 14–17 May

    Google Scholar 

  48. Müller MW, Biela C, Schiffer H-P (2008) Interaction of rotor and casing treatment flow in an axial single-stage transonic compressor with circumferential groove. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 6: turbomachinery, parts A, B, and C, paper GT2008-50135, Berlin, Germany, 9–13 June

    Google Scholar 

  49. Wu Y, Chu W, Zhang H, Li Q (2010) Parametric investigation of circumferential grooves on compressor rotor performance. ASME J Fluids Eng 132(12):121103

    Article  Google Scholar 

  50. Johann E, Nipkau J, Muck B (2008) Experimental and numerical flutter investigation of the 1st stage rotor in 4-stage high speed compressor. In: Proceedings of ASME Turbo Expo 2008: power for land, sea, and air, Bd 5: structures and dynamics, parts A and B, paper GT2008-50698, Berlin, Germany, 9–13 June

    Google Scholar 

  51. Souleimani Y, Vo HD, Yu H (2018) Performance desensitization for a high-speed axial compressor. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2018-77203, Oslo, Norway, 11–15 June

    Google Scholar 

  52. Rolfes M, Lange M, Vogeler K, Mailach R (2017) Experimental and numerical investigation of a circumferential groove casing treatment in a low speed axial research compressor at different tip clearances. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-63051, Charlotte, USA, 26–30 June

    Google Scholar 

  53. Guinet C, Streit JA, Gümmer V, Kau H-P (2014) Tip gap variation on a transonic rotor in the presence of tip blowing. In: Proceedings ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2014-25042, Düsseldorf, Germany, 16–20 June

    Google Scholar 

  54. Azmian AR, Elder R, Mcenzie AB (1990) Application of recess vaned casing treatment to axial flow fans. ASME J Turbomach 112(1):145–150

    Article  Google Scholar 

  55. Smith GDJ, Cumpsty NA (1984) Flow phenomena in compressor casing treatment. ASME J Eng Gas Turbines Power 106(3):532–541

    Article  Google Scholar 

  56. Wilke I, Kau H-P (2005) Numerically aided design of a high-efficient casing treatment for a transonic compressor. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68993, Reno, Nevada, USA, 6–9 June

    Google Scholar 

  57. Ma N, Nan X, Lin F (2016) Numerical study on effects of axial-slot casing treatment on peak efficiency of axial compressors. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56554, Seoul, South Korea, 13–17 June

    Google Scholar 

  58. Denton JD (1993) The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. ASME J Turbomach 115(4):621–656

    Article  Google Scholar 

  59. Lu X, Chu W, Zhu J, Wu Y (2006a) Mechanism of the interaction between casing treatment and tip leakage flow in a subsonic axial compressor. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90077, Barcelona, Spain, 8–11 May

    Google Scholar 

  60. Müller MW, Schiffer H-P, Voges M, Hah C (2011) Investigation of passage flow features in a transonic compressor rotor. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45364, Vancouver, British Columbia, Canada, 6–10 June, S 65–75

    Google Scholar 

  61. Lu X, Chu W, Zhu J, Wu Y (2006) Experimental und numerical investigation of a subsonic compressor with bend skewed slot casing Treatment. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90026, Barcelona, Spain, 8–11 May

    Google Scholar 

  62. Emmerich R, Hönen H, Niehuis R (2007a) Time resolved investigations of an axial compressor with casing treatment; part 1 – experiment. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27581, Montreal, Canada, 14–17 May

    Google Scholar 

  63. Emmerich R, Kunte R, Hönen H, Niehuis R (2007b) Time resolved investigations of an axial compressor with casing treatment; part 2 – simulation. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27582, Montreal, Canada, 14–17 May

    Google Scholar 

  64. Ivanov SK (1965) Axial blower. U. S. Patent No. 3189260

    Google Scholar 

  65. Miyake Y, Inaba T, Kato T (1987) Improvement of unstable characteristics of an axial flow fan by air-separator equipment. ASME J Fluids Eng 109(1):36–40

    Article  Google Scholar 

  66. Hill SD, Elder RL, McKenzie AB (1998) Application of casing treatment to an industrial axialflow fan. Proc Inst Mech Eng A J Power Energy 212:225–233

    Article  Google Scholar 

  67. Nishioka T, Kuroda S, Kozu T (2004) Improving stall margin by using an air-separator for a variable-pitch axial-flow fan. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53663, Vienna, Austria, 14–17 June

    Google Scholar 

  68. Wang W, Chu W, Zhang H, Wu Y (2016) The effects on stability, performance and tip leakage flow of recirculating casing treatment in a subsonic axial flow compressor. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56756, Seoul, South Korea, 13–17 June

    Google Scholar 

  69. Chen H, Li Y, Koley SS, Doeller N, Katz J (2017) An experimental study of stall suppression and associated changes to the flow structures in the tip region of an axial low speed fan rotor by axial casing grooves. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2017-65099, Charlotte, North Carolina, USA, 26–30 June

    Google Scholar 

  70. Streit JA, Guinet C, Heinichen F, Kau H-P (2012) Trading excessive stall margin for efficiency: an alternative approach to axial-slot casing treatments for transonic compressors. In: Conference paper, conference: 13th international symposium on unsteady aerodynamics, aeroacoustics and aeroelasticity of turbomachines, Tokyo, Japan

    Google Scholar 

  71. Suder KL, Hathaway MD, Thorp SA, Strazisar AJ, Bright MB (2001) Compressor stability enhancement using discrete tip injection. In: Proceedings of ASME Turbo Expo 2000: power for land, sea, and air, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 2000-GT-650, Munich, Germany, 8–11 May

    Google Scholar 

  72. Khalegi H, Teixera JA, Tousi AM, Boroomand M (2008) Parametric study of injection angle effects on stability enhancement of transonic axial compressors. Journal of Propulsion and Power 24(5):1100–1107

    Article  Google Scholar 

  73. Hathaway MD (2002) Self-recirculating casing treatment concept for enhanced compressor performance. In: Proceedings of self-recirculating casing treatment concept for enhanced compressor performance. Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30368, Amsterdam, The Netherlands, 3–6 June

    Google Scholar 

  74. Guinet C, Inzenhofer A, Gümmer V (2015) Influencing parameter of tip blowing interactions with rotor tip flow. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2015-42039, Montreal, Quebec, Canada, 15–19 June

    Google Scholar 

  75. Hah C (2018) The inner workings of axial casing grooves in a one and a half stage. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2018-75040, Oslo, Norway, 11–15 June

    Google Scholar 

  76. Chen H, Li Y, Katz J (2018) On the interactions of a rotor blade tip flow with axial casing grooves in an axial compressor near the best efficiency point. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2018-77071, Oslo, Norway, 11–15 June

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Stabilisierung durch Wandkonturierung, „Endwall treatment“. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_8

Download citation

Publish with us

Policies and ethics