Skip to main content

Verdichterinstabilitäten

  • Chapter
  • First Online:
  • 2655 Accesses

Zusammenfassung

Das Erscheinungsbild der Verdichterinstabilitäten ist von einer großen Anzahl von Parametern abhängig, die während des Betriebs einer Turbomaschine variieren und sich nicht immer ausreichend kontrollieren lassen. Um gezielt Gegenmaßnahmen zu entwickeln, ist die detaillierte Kenntnis der Instabilitätsursachen notwendig, wie sie in den letzten Jahren anhand aufwendiger Messverfahren und gut aufgelöster numerischer Untersuchungen gewonnen wurde. Im Folgenden werden das Phänomen des Pumpens und Abreißens sowie Maßnahmen zur Erweiterung der Pumpgrenze bis zur aktiven Überwachung beschrieben.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Lieblein S, Francis C, Schwenk, Robert, LB (1953) Diffusion factor for estimating losses and limiting blade loadings in axial-flow-compressor blade elements. No. NACA-RM-E53D01

    Google Scholar 

  2. Koch CC (1981) Stalling pressure rise capability of axial flow compressor stages. ASME J Eng Power 103(4):645–656

    Google Scholar 

  3. Sovran G, Klomp ED (1967) Experimentally determined optimum geometries for rectilinear diffusers with rectangular, conical or annular cross section. Fluid Mechanics of Internal Flow. Elsevier Publishing, Amsterdam

    Google Scholar 

  4. Emmons HW, Pearson CE, Grant HP (1955) Compressor surge and stall propagation. ASME J Turbomach 77:455–469

    Google Scholar 

  5. Vo HD, Tan CS, Greitzer EM (2008) Criteria for spike initiated rotating stall. ASME J Turbomach 130(1):011023

    Google Scholar 

  6. Cameron JD, Benningtion MA, Ross MH et al (2013) The influence of tip clearance momentum flux on stall inception in a high-speed axial compressor. ASME J Turbomach 135(5):051005

    Google Scholar 

  7. Lin F, Zhang J, Chen J, Nie C (2008) Flow structure of short-length-scale disturbance in an axial-flow compressor. J Propuls Power 24(6):1301–1308

    Google Scholar 

  8. Nan X, Lin F, Wang S (2014) The budget analysis of axial momentum of the rotor tip flows for axial compressors with circumferential grooves. In Proceedings of ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2A: turbomachinery, paper GT2014-26495, Düsseldorf, Deutschland, 16.–20. Juni 2014

    Google Scholar 

  9. Nan X, Ma N, Lin F (2016) Evaluation of the effectiveness of typical casing treatments for a low-speed compressor by an integral method. Aerosp Sci Technol 52:234–242

    Google Scholar 

  10. Nan X, Lin F, Himeno T, Watanabe T (2018) The behavior of the casing boundary layer with the presence of tip leakage vortex. In: Proceedings of ASME Turbo Expo 2018: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2018-75916, Oslo, Norwegen, 11.–15. Juni 2018

    Google Scholar 

  11. Hathaway MD (2007) Passive endwall treatments for enhancing stability. NASA TM-214409

    Google Scholar 

  12. Shabbir A, Adamczyk JJ (2005) Flow mechanism for stall margin improvement due to circumferential casing grooves on axial compressors. ASME J Turbomach 127(3):708–717

    Google Scholar 

  13. Wilke I, Kau HP (2004) A numerical investigation of the flow mechanisms in a high-pressure compressor front stage with axial slots. ASME J Turbomach 126(2):339–349

    Google Scholar 

  14. Cevik M, Vo HD, Yu H (2016) Casing treatment for desensitization of compressor performance and stability to tip clearance. ASME J Turbomach 138(12):16

    Google Scholar 

  15. Müller MW, Schiffer HP, Hah C (2007)Effect of circumferential grooves on the aerodynamic performance of an axial single-stage transonic compressor. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27365, Montreal, Kanada, 14.–17. Mai 2007

    Google Scholar 

  16. Day IJ (1994) Axial compressor performance during surge. AIAA J Propuls Power 10(3):329–336

    Google Scholar 

  17. Day IJ, Freeman C (1994) The unstable behaviour of low and high speed compressors. ASME J Turbomach 116(2):194–211

    Google Scholar 

  18. Moore FK, Greitzer EM (1986) A theory of post-stall transients in axial compression systems: part I. ASME J Eng Gas Turbines Power 108(1):68–76

    Google Scholar 

  19. Longley JP (1994) A review of non-steady flow models for comressor stability. ASME J Turbomach 116(2):202–215

    Google Scholar 

  20. Schulze R (1998) Aktive Stabilisierung eines Axialverdichters. Dissertation, Technische Universität Darmstadt

    Google Scholar 

  21. Gravdahl JT, Egeland O (1999) Advances in industrial control, compressor surge and rotating stall – modeling and control. Springer-Verlag, London

    Google Scholar 

  22. Spakovszky ZS (2001) Applications of axial and radial compressor dynamic system modeling. Ph.D. thesis, Departement of Aeronautics and Astronautics, MIT

    Google Scholar 

  23. Willems FPT (2000) Modeling and bounded feedback stabilization of centrifugal compressor surge. Dissertation, Technische Universität Eindhofen

    Google Scholar 

  24. Royce D, Moore RD, Reid L (1980) Performance of single-stage axial-flow transonic compressor with rotor and stator aspect ratios of 1.19 and 1.26, respectively, and with design pressure ratio of 2.05. NASA Technical Paper 1659

    Google Scholar 

  25. Hagen, H. (1982) Fluggasturbinen und ihre Leistungen. G. Braun, Karlsruhe

    Google Scholar 

  26. Grieb H (2004) Projektierung von Turboflugtriebwerken. Birkhäuser, Basel/Boston/Berlin

    Google Scholar 

  27. Stiller C, Thorud B, Bolland O (2005) Safe dynamic operation of a simple SOFC/GT hybrid system. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 5: Turbo Expo 2005, paper GT2005-68481, Reno, Nevada, USA, 6.–9. Juni 2005

    Google Scholar 

  28. Hildebrandt A, Genrup M, Assadi M (2004) Steady-state and transient compressor surge behaviour within a SOFC-GT-hybrid system. In: Proceedings of ASME ASME Turbo Expo 2004: power for land, sea, and air, Bd 7: Turbo Expo 2004, paper GT2004-53892, Wien, Österreich, 14–17 Juni 2004

    Google Scholar 

  29. Hathaway MD (2002) Self-recirculating casing treatment concept for enhanced compressor performance. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT-2002-30368, Amsterdam, Niederlande, 3.–6. Juni 2002

    Google Scholar 

  30. Seddon J, Goldsmith EL (1985) Intake Aerodynamics. W. Collins and Sons Ltd, London

    Google Scholar 

  31. Guo RW, Seddon J (1983) The swirl in an S-duct of typical air-intake proportions. Aeronaut Q 34(2):99–129

    Google Scholar 

  32. Schmid NR, Leinhos DC, Fottner L (1999) Performance of a turbofan engine with inlet distortion from the inlet diffuser of a combined cycle engine for hypersonic flight. In: Proceedings of the 14th ISABE, paper ISABE-99-7076, Florenz, Italien 1999

    Google Scholar 

  33. Schmid NR, Leinhos DC, Fottner L (2001) Steady performance measurements of a turbofan engine under the presence of inlet distortion with co- and counter -rotating swirl from the intake diffuser for hypersonic flight. ASME J Turbomach 123:379–385; ASME Turbo Expo 2000-GT-11

    Google Scholar 

  34. Bernhard D (1999) Untersuchungen zum Einfluss kombinierter Drall- und Totaldruckstörungen auf das Stabilitätsverhalten von Turbostrahltriebwerken. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  35. Schweitzer JK, Garberroglio JE (1984) Maximum loading capability of axial flow compressors. J Aircr 21(8):593–600

    Google Scholar 

  36. Greitzer EM (1978) Surge and rotating stall in axial flow compressors, parts I&II. ASME J Eng Power 98:190–198, 199–211

    Google Scholar 

  37. Day IJ, Cumpsty NA (1978) The measurement and interpretation of flow within rotating stall cells in axial compressors. J Mech Eng Sci 20(2):101–114

    Google Scholar 

  38. Gamache RN, Greitzer EM (1986) Reverse flow in multistage axial compressors. AIAA-86-1747

    Google Scholar 

  39. Longley JP (2007) Calculating stall and surge transients. In: Proceedings of ASME ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27378, Montreal, Kanada, 14.–17. Mai 2007

    Google Scholar 

  40. Tryfonidis M, Etchevers O, Paduano JD, Epstein AH, Hendricks GJ (1995) Pre-stall behavior of several high-speed compressors. ASME J Turbomach 117(1):62–80

    Google Scholar 

  41. Day IJ (1993) Stall inception in axial flow compressors. ASME J Turbomach 115(1):1–9

    Google Scholar 

  42. Camp TR, Day IJ (1997) A study of spike and modal stall phenomena in a low-speed axial compressor. ASME J Turbomach 120:393–401

    Google Scholar 

  43. Escuret JF, Garnier V (1996) Stall inception measurements in a high-speed multistage compressor. J Turbomach 118(4):690–696

    Google Scholar 

  44. Day IJ, Breuer T, Escuret J, Cherrett M, Wilson A (1999) Stall Inception and the prospects for active control in four high-speed compressors. J Turbomach 121(1):18–27

    Google Scholar 

  45. Schreiber J, Ottavy X, Ngo Boum G, Gourdain N (2016) Influence of rotor tip flow field mis-prediction on rotating disturbance near surge in a high speed multistage compressor. In: Proceedings ofASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: Turbomachinery, paper GT2016-57372, Seoul, Südkorea, 13.–17. Juni 2016

    Google Scholar 

  46. Inoue M, Kuroumaru M, Yoshida S, Minami T (2004) Effect of tip clearance on stall evolution process in a low-speed axial compressor stage. In Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53354, Wien, Österreich, 14.–17. Juni 2004

    Google Scholar 

  47. Simpson AK, Longley JP (2007) An experimental study of the inception of rotating stall in a single-stage low speed axial compressor. In Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27181, Montreal, Kanada, 14.–17. Mai 2007

    Google Scholar 

  48. Levey Y, Pismenny J (2007) Pressure field at the tip of rotor blades before and during rotating stall. European Turbomachinery Conference ETC, Athen, 2007

    Google Scholar 

  49. Imregun M (2006) Unsteady flow and aeroelasticitybehaviour of aero-engine core compressors during rotating stall and surge. In: Proceedings of ASMEASME Turbo Expo 2006: power for land, sea, and air, Bd 6: Turbomachinery, parts A and B, paper GT2006-91231, Barcelona, Spanien, 8.–11. Mai 2006

    Google Scholar 

  50. Vahdati M, Simpson G, Imregun M (2006) Unsteady flow and aero-elasticity behaviour of aero-engine core compressors during rotating stall and Surge. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: Turbomachinery, parts A and B, Barcelona, Spanien, 8.–11. Mai 2006

    Google Scholar 

  51. Hoying DA, Tan CS, Vo HD, Greitzer EM (1999) Role of blade passage flow structures in axial compressor rotating stall inception. ASME J Turbomach 121(4):735–742

    Google Scholar 

  52. Vo HD, Tan CS, Greitzer EM (2005) Criteria for spike initiated rotating stall. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68374, Reno, Nevada, USA 2005

    Google Scholar 

  53. Bennington MA, Cameron JD, Morris SC, Gendrich CP (2007) Over rotor casing surface measurements in a high speed axial compressor. In: Proceedings ofASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28273, Montreal, Kanada, 14.–17. Mai

    Google Scholar 

  54. Pullan G, Young AM, Day IJ, Greitzer M, Spakovszky Z (2012) Origins and structure of spike-type rotating stall. ASME Turbo Expo. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: Turbomachinery, parts A, B, and C, paper GT2012-68707, Kopenhagen, Dänemark, 11.–15. Juni 2012

    Google Scholar 

  55. Qian Y, Jinnn Y, Zhuge W, Zhang Y, Lu Y (2016) Linear to nonlinear transition during the spike stall process in a low speed axial flow compressor rotor. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: Turbomachinery, paper GT2016-56752, Seoul, Südkorea, 13.–17. Juni 2016

    Google Scholar 

  56. Ottavy XN, Gourdain N, Courtiade N (2012) Experimental and computational methods for flow investigation in a high-speed multistage compressor. J Propuls Power 28(6):1141–1155

    Google Scholar 

  57. Gourdain N, Wlassow F, Ottavy X (2012) Effect of tip clearance dimensions and control of unsteady flows in a multi-stage high-pressure compressor. ASME J Turbomach 134(5):051005

    Google Scholar 

  58. Marty J, Riéra W, Castillon L (2014) Zonal detached eddy simulation of tip leakage flow in an axial high pressure compressor. In: Proceedings ofASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2B: Turbomachinery, paper GT2014-25150, Düsseldorf, Deutschland, 16.–20. Juni 2014

    Google Scholar 

  59. Schreiber J, Ottavy X, Ngo Boum G, Stéphane A, Sicot F (2015) Numerical simulation of the flow field in a high speed multistage compressor – Study of the Time Discretization Sensitivityé. In: Proceedings of ASME Turbo Expo 2015: turbine technical conference and exposition, Bd 2B: Turbomachinery, paper GT2015-42114, Montreal, Quebec, Kanada, 15.–19. Juni 2015

    Google Scholar 

  60. McDougall NM, Cumpsty NA, Hynes TP (1990) Stall inception in axial compressors. ASME J Turbomach 112(1):116–125

    Google Scholar 

  61. Moore FK (1984) A theory of rotating stall of multistage axial compressors: part I-Small disturbances, part II-Finite disturbances and part III – Limit cycles. ASME J Eng Gas Turbines Power 106(2):313–336

    Google Scholar 

  62. Hynes TP, Greitzer EM (1987) A method for assessing effects of inlet flow distortion on compressor stability. ASME J Turbomach 109(3):371–379

    Google Scholar 

  63. Longley JP (1994) A review of non-steady flow models for compressor stability. ASME J Turbomach 116(2):202–215

    Google Scholar 

  64. Wilke I, Kau HP (2007) A numerical investigation of the influence of casing treatments on the tip leakage flow in a hpc front stage. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2007-30642, Amsterdam, Niederlande, 3.–6. Juni 2007

    Google Scholar 

  65. Hah C, Rabe DC, Wadia AR (2004) Role of Tip-Leakage vortices and passage shock in stall inception in a swept transonic compressor rotor. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53867, Wien, Österreich, 14.–17. Juni 2004

    Google Scholar 

  66. Hah C, Bergner J, Schiffer HP (2006) Short length–scale rotating stall inception in a transonic axial compressor – criteria and mechanisms. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: Turbomachinery, parts A and B, Barcelona, Spanien, 8.–11. Mai 2006

    Google Scholar 

  67. Bergner J, Kinzel M, Schiffer HP (2006) Short length-scale rotating inception in a transonic axial compressor –experimental investigation. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: Turbomachinery, parts A and B, paper GT2006-90209, Barcelona, Spanien, 8.–11. Mai 2006

    Google Scholar 

  68. Chen JP, Webster RS, Hathaway MD, Herrick GP, Skoch GJ (2006) Numerical simulation of stall and stall control in axial and radial compressors. AIAA paper 2006-418

    Google Scholar 

  69. Chen JP, Hathaway MD (2007) Pre-stall behaviour of a transonic axial compressor stage via time-accurate numerical solution. In: Proceedings of ASME ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, May 14–17 2007, Montreal Canada, parts A and B, paper GT2007-27926

    Google Scholar 

  70. Kirtley KR, Beach TA, Adamczyk JJ (1990) Numerical analysis of secondary flow in a two-stage turbine. AIAA-90-2356

    Google Scholar 

  71. Van Zante DE, Strazisar AJ, Wood JR, Hathaway MD, Okiishi TH (2000) Recommendations for achieving accurate numerical simulation of tip clearance flows in transonic compressor rotors. ASME J Turbomach 122(4):733–742

    Google Scholar 

  72. Greitzer EM, Strand T (1978) Asymmetric swirling flows in turbomachine annuli. ASME J Eng Power 100(4):618–629

    Google Scholar 

  73. Garnier VH, Epstein AH, Greitzer EM (1991) Rotating waves as a stall inception indication in axial compressors. ASME J Turbomach 113(2):290–302

    Google Scholar 

  74. Lin F, Chen J, Li M (2002) Practical issues of wavelet analysis of unsteady tip flows in compressors. AIAA-2002-4082, AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Indianapolis, 2002

    Google Scholar 

  75. Lin F, Chen J, Li M (2004) Wavelet analysis of rotor-tip disturbances in an axial-flow compressor. ASME J Propuls Power 20(2):319–334

    Google Scholar 

  76. Jahnen W, Peters T, Fottner L (1999) Stall inception in a 5-stage HP compressor with increased load due to inlet distortion. In: Proceedings of ASME ASME 1999 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, 99-GT-440, Indianapolis, Indiana, USA, 7.–10. Juni 1999

    Google Scholar 

  77. Leinhos DC, Schmid NR, Fottner L (2001) The influence of transient inlet distortions on the instability inception of a low pressure compressor in a turbofan engine. ASME J Turbomach 123(1):1–8

    Google Scholar 

  78. Inoue M, Kuroumaru M, Yashida S, Furukawa M (2001) Short and long-scale disturbances leading to rotating stall in an axial compressor stage with different stator/rotor gaps. In: Proceedings of ASME ASME Turbo Expo 2001: power for land, sea, and air, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 2001-GT-341, New Orleans, Louisiana, USA, 4.–7. Juni 2001

    Google Scholar 

  79. Scheidler SG (2005) Untersuchung der Systemaspekte stabilitätsverbessernder Maßnahmen in Gasturbinen. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  80. Lin F, Li M, Chen J (2005) Long-to-short length scale transition: a stall inception phenomenon in an axial compressor with inlet distortion. In: Proceedings of ASME ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68656, Reno, Nevada, 2005

    Google Scholar 

  81. Bright MM, Qammar HK, Wang LZ (1999) Investigation of pre-stall mode and pip inception in high-speed compressors through through the use of correlation integral. J Turbomach 121(4):743–750

    Google Scholar 

  82. Zake M, Sankar L, Menon S (2010) Hybrid reynolds-averaged navier-stokes/kinetic-eddy simulation of stall inception in axial compressors. J Propuls Power 26(6):1276–1282. https://doi.org/10.2514/1.50195

    Article  Google Scholar 

  83. Davis R, Yao J (2007) Computational approach for predicting stall inception in multistage axial compressor. J Propuls Power 23(2):257–265. https://doi.org/10.2514/1.18442

    Article  Google Scholar 

  84. Hoying DA, Tan CS, Vo HD, Greitzer EM (1999) Role of blade passage flow structures in axial compressor rotating stall inception. ASME J Turbomach 121(4):735–742. https://doi.org/10.1115/1.2836727

    Article  Google Scholar 

  85. Vo HD, Tan CS, Greitzer EM (2008) Criteria for spike initiated rotating stall. ASME J Turbomach 130:1–8. https://doi.org/10.1115/1.2750674

    Article  Google Scholar 

  86. Chen J, Hathaway M, Herrick G (2008) Prestall behavior of a transonic axial compressor stage via time-accurate numerical simulation. ASME J Turbomach 130(1):1–12. https://doi.org/10.1115/1.2812968

    Article  Google Scholar 

  87. Chen J, Johnson B, Hathaway M, Webster R (2009) Flow characteristics of tip injection on compressor rotating spike via time-accurate simulation. J Propuls Power 25(3):678–687. https://doi.org/10.2514/1.41428

    Article  Google Scholar 

  88. Gan JY, Im HS, Zha GC (2015) Simulation of stall inception of a high speed axial compressor with rotor-stator interaction. AIAA Paper 2015-3932, 51st AIAA/SAE/ASEE Joint Propulsion Conference, Orlando, Florida, 2015

    Google Scholar 

  89. Gan J, Im HS, Zha GC (2016) Delayed detached eddy simulation of rotating stall for a full annulus transonic axial compressor stage. In: Proceedings of ASME ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: Turbomachinery, paper GT2016-57985, Seoul, Südkorea, 2016

    Google Scholar 

  90. Kang YS, Park TC, Lim BJ, Lim HS (2017) Comparison of stall characteristics of multistage and single-stage transonic axial compressor. In: Proceedings ofASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2A: Turbomachinery, paper GT2017-64115, Charlotte, North Carolina, USA, 26.–30. Juni 2017

    Google Scholar 

  91. Greitzer EM, Moore FK (1986) A theory of post-stall transients in axial compression systems: part II-application. ASME J Eng Gas Turbines Power 108(2):231–239

    Google Scholar 

  92. Moore FK, Greitzer EM (1986) A theory of post-stall transients in axial compressor systems: part I-development of equations. ASME J Eng Gas Turbines Power 108(1):68–76

    Google Scholar 

  93. Meyer W (1988) Untersuchungen zum Einfluss von Einlaufdrallstörungen auf das stationäre Betriebsverhalten von Turbostrahltriebwerken. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  94. Pazur W (1991) Experimentelle und numerische Untersuchungen zum Einfluss von Einlaufdrallstörungen auf das Betriebsverhalten von Flugtriebwerksverdichtern. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  95. Höss B (1998) Zum Einfluss von Eintrittsstörungen auf das dynamische Leistungsverhalten von Turbostrahltriebwerken unter besonderer Berücksichtigung instabiler Verdichterströmungen. Dissertation, Universität der Bundeswehr München

    Google Scholar 

  96. Suder KL, Chima RV, Strazisar AJ, Roberts WB (1995) The effect of adding roughness and thickness to a transonic axial compressor rotor. ASME J Turbomach 117(4):491–505

    Google Scholar 

  97. Kwon OJ, Sankar LN (1997) Numerical simulation of the flow about a swept wing with leading edge ice accretions. Comput Fluids 26(2):183–192

    Google Scholar 

  98. Khalid M, Zhang S, Chen S (2002) A study of aerodynamic performance degradation on aerofoils and aircraft wings due to accreted ice. Aeronaut J 106:461–472

    Google Scholar 

  99. Tuck EO (1991) A criterion for leading edge separation. J Fluid Mech 222:33–37

    MATH  Google Scholar 

  100. Walraevens RE, Cumpsty NA (1995) Leading-edge separation bubbles on turbomachine blades. ASME J Turbomach 117(1):115–125

    Google Scholar 

  101. Tain L (1998) Compressor leading edges in incompressible and compressible flows. Dissertation, Cambridge University

    Google Scholar 

  102. Elmstrom ME, Millsaps KT, Patterson JS (2005) Impact of non-uniform leading edge coatings on the aerodynamic performance of compressor airfoils. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68091, Reno, Nevada, USA, 6.–9. Juni 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Verdichterinstabilitäten. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_5

Download citation

Publish with us

Policies and ethics