Skip to main content

Grundlagen der Aerodynamik

  • Chapter
  • First Online:
  • 2782 Accesses

Zusammenfassung

Zur Berechnung der Hauptbetriebsdaten der Strömungsmaschinen werden die aus der Strömungsmechanik bekannten Bilanzen

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Traupel W (1988) Thermische Turbomaschinen, Bd 1. Springer, Berlin/Heidelberg/New York

    MATH  Google Scholar 

  2. Traupel W (1988) Thermische Turbomaschinen, Bd 2. Springer, Berlin/Heidelberg/New York

    MATH  Google Scholar 

  3. Lechner G, Seume J (2003) Stationäre Gasturbinen. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  4. Rick H (2013) Gasturbinen und Flugantriebe: Grundlagen, Betriebsverhalten und Simulation. Springer Vieweg, Berlin/Heidelberg

    Book  Google Scholar 

  5. Riegels FW (1958) Aerodynamische Profile. Verlag, Oldenbourg

    MATH  Google Scholar 

  6. Bohl W, Elemendorf W (2012) Strömungsmaschinen 1: Aufbau und Wirkungsweise, Kamprath-Reihe, 11. Aufl. Vogel Communications Group GmbH & Co. KG, Würzburg

    Google Scholar 

  7. Grieb H (2009) Verdichter für Turbo-Flugtriebwerke. Springer-Verlag, Berlin

    Google Scholar 

  8. Emery JC, Herrig LJ, Erwin JR, Felix AR (1958) Systematic two-dimensional cascade tests of NACA 65-series compressor blades at low speeds. NACA report 1368, NACA Washington, DC

    Google Scholar 

  9. Kovach K, Sanderock DM (1961) Aerodynamic design and performance of five stage transonic axial flow compressor. ASME J Eng Pow 83:304–321

    Google Scholar 

  10. Cumpsty NA (1989) Compressor aerodynamics. Longman Scientific and Technical, Essex

    Google Scholar 

  11. Aungier RH (2003) Axial-flow compressors. ASME Press, New York

    Book  Google Scholar 

  12. Behlke RF (1986) The development of a second generation of controlled diffusion airfoils for multistage compressors. ASME J Turbomach 108(1):32–41

    Article  Google Scholar 

  13. Hobbs DE, Weingold HD (1984) Development of controlled diffusion airfoils for multistage compressor application. ASME J Eng Gas Turbines Power 106(2):271–278

    Article  Google Scholar 

  14. Voss C, Aulich M, Kaplan B, Nicke E (2006) Automated multi-objective optimisation in axial compressor blade design. In: Proceedings of ASME Turbo Expo 2006: power for land, sea and air, volume 6: turbomachinery, parts A and B. Paper GT2006-0420, Barcelona, Spain, 8–11 May

    Google Scholar 

  15. Bitterlich W, Ausmeier S (2002) Gasturbinen und Gasturbinenanlagen: Darstellung und Berechnung. Vieweg Teubner, Wiesbaden

    Book  Google Scholar 

  16. Hergt A, Klinner J, Wellner J, Willert C, Grund S, Steinert W, Beversdorff M (2018) The present challenge of transonic compressor blade design. In: Proceedings of ASME Turbo Expo 2018. Turbomachinery technical conference and exposition, paper GT2018-75528, Oslo, Norway, 11–15 June

    Google Scholar 

  17. Denton JD (1993) The 1993 IGTI scholar lecture: loss mechanisms in turbomachines. ASME J Turbomach 115(4):621

    Article  Google Scholar 

  18. Williams R, Gregory-Smith D, He L, Ingram G (2010) Experiments and computations on large tip clearance effects in a linear cascade. ASME J Turbomach 132(2):021018

    Article  Google Scholar 

  19. Storer JA, Cumpsty NA (1991) Tip leakage flow in axial compressors. ASME J Turbomach 113(2):252–259

    Article  Google Scholar 

  20. Yoon YS, Song SJ, Shin H-W (2006) Influence of flow coefficient, stagger angle, and tip clearance on tip vortex in axial compressors. ASME J Fluids Eng 128(6):1274–1280

    Article  Google Scholar 

  21. Bae J, Breuer KS, Tan CS (2004) Periodic unsteadiness of compressor tip clearance vortex. In: Proceedings ASME Turbo Expo 2004: power for land, sea and air, volume 6: Turbo Expo 2004, paper GT2004-53015,Vienna, Austria, 14–17 June, S 457–465

    Google Scholar 

  22. Hwang Y, Kang S-H, Lee S (2010) Numerical study on unsteadiness of tip clearance flow induced by downstream stator row in axial compressor. In: Proceedings of ASME Turbo Expo 2010: power for land, sea and air, volume7: turbomachinery, parts A, B, and C, paper GT2010-23024, Glasgow, UK, 14–18 June, S 2553–2560

    Google Scholar 

  23. Smith LH (1966) Wake dispersion in turbomachines. J Basic Eng 88(3):688

    Article  Google Scholar 

  24. Van Zante DE, Adamczyk JJ, Strazisar AJ, Okiishi TH (2002) Wake recovery performance benefit in a 12 Copyright © 2016 by Siemens Energy Inc., high-speed axial compressor. J Turbomach 124(2):275

    Article  Google Scholar 

  25. Valkov TV, Tan CS (1999) Effect of upstream rotor vortical disturbances on the time-averaged performance of axial compressor stators: part 1: framework of technical approach and wake-stator blade interactions. J Turbomach 121(3):377

    Article  Google Scholar 

  26. Valkov TV, Tan CS (1999) Effect of upstreamrotor vortical disturbances on the time-averaged performance of axial compressor stators: part 2: rotor tip vortex/streamwise vortex-stator blade interactions. J Turbomach 121(3):387

    Article  Google Scholar 

  27. Gallimore SJ, Bolger JJ, Cumpsty NA, Taylor MJ, Wright PI, Place JMM (2002) The use of sweep and dihedral in multistage axial flow compressor blading; part I: university research and methods development. J Turbomach 124(4):521

    Article  Google Scholar 

  28. Gallimore SJ, Bolger JJ, Cumpsty NA, Taylor MJ, Wright PI, Place JMM (2002) The use of sweep and dihedral in multistage axial flow compressor blading; part II: low and high-speed designs and test verification. J Turbomach 124(4):533

    Article  Google Scholar 

  29. Buche D, Guidati G, Stoll P (2003) Automated design optimization of compressor blades for stationary, large-scale turbomachinery. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference volume 6: Turbo Expo 2003, parts A and B, paper GT2003-38421, Atlanta, Georgia, USA, 16–19 June, S 1249–1257

    Google Scholar 

  30. Seshadri P, Shahpar S, Parks GT (2014) Robust compressor blades for desensitizing operational tip clearance variations. In: ASME Turbo Expo 2014: turbine technical conference and exposition, volume 2A: turbomachinery, paper GT2014-26624, Düsseldorf, Germany, 16–20 June, S V02AT37A043

    Google Scholar 

  31. Wisler DC (1985) Loss reduction in axial-flow compressors through low-speed model testing. J Eng Gas Turbines Power 107(2):354

    Article  Google Scholar 

  32. Tiralap A, Tan CS, Donahoo E, Montgomery M, Cornelius C (2016) Effects of rotor tip blade loading variation on compressor stage performance. In: Proceedings ASME Turbo Expo 2016: turbomachinery technical conference and exposition, volume 2A: turbomachinery, paper GT2016-57727, Seoul S-Korea, 13–17 June

    Google Scholar 

  33. Taghavi-Zenouz R, Eslami S (2011) Numerical simulation of unsteady tip clearance flow in an isolated axialcompressor rotor blades row. In: Proceedings of the Institution of Mechanical Engineers, part C: J Mech Eng Sci, 226(1):82–93

    Google Scholar 

  34. Zhang H, Deng X, Lin F, Chen J, Huang W (2006) A study on the mechanism of tip leakage flow unsteadiness in an isolated compressor rotor. In: Proceedings ASME Turbo Expo 2006: power for land, sea, and air, volume 6: turbomachinery, parts A and B, paper GT2006-91123, Barcelona, Spain, 8–11 May, S 435–445

    Google Scholar 

  35. Hergt A, Steinert W, Grund S (2013) Design and experimental investigation of a compressor cascade for low reynolds number conditions. In: ISABE paper, 21st ISABE conference Busan/Korea, September 2013

    Google Scholar 

  36. Denton JD (1993) The 1993 IGTI Scholar lecture: loss mechanisms in turbomachines. J Turbomach 115(4):621–656

    Article  Google Scholar 

  37. Van Zante DE, Adamczyk JJ, Strazisar AJ, Okiishi TH (2002) Wake recovery performance benefit in a high speed axial compressor. ASME J Turbomach 124:275–284

    Article  Google Scholar 

  38. Adamczyk JJ (1996) Wake mixing in axial flow compressors. In: Proceedings ASME 1996 international gas turbine and aeroengine congress and exhibition, vol. 1: turbomachinery, paper 96-GT-029, Birmingham, UK, 10–13 June

    Google Scholar 

  39. Zaki T, Wissink J, Durbin PA, Rodi W (2010) Direct numerical simulations of transition in a compressor cascade: the influence of free-stream turbulence. J Fluid Mech 665:57–98

    Article  Google Scholar 

  40. Hah C, Shin H (2012) Study of near –stall flow behavior in a modern transonic fan with compound sweep. ASME J Fluids Eng 134:071101–071107

    Article  Google Scholar 

  41. Gourdain N (2013) Validation of large eddy simulation for the prediction of compressible flow in an axial compressor stage. In: ASME Turbo Expo 2013: turbine technical conference and exposition, volume 6C: turbomachinery, paper GT2013-94550, San Antonio, Texas, USA, 3–7 June

    Google Scholar 

  42. Hah C, Hathaway M, Katz J (2014) Investigation of unsteady flow field in a low speed one and a half stage axial compressor: effects of tip gap size on the tip clearance flow structure at near stall operation. In: Proceedings ASME Turbo Expo 2014: turbine technical conference and exposition, volume 2D: turbomachinery, paper GT2014-27094, Düsseldorf, Germany, 16–20 June

    Google Scholar 

  43. Papadogiannis D, Duchane F, Sicot F, Gicquel L, Wang G, Moreau S (2014) Large eddy simulation of high pressure turbine stage: effects of sub-grid scale modeling and mesh resolution. In: Proceedings ASME Turbo Expo 2014: turbine technical conference and exposition, volume 2B: turbomachinery, paper GT2014-25876, Düsseldorf, Germany, 16–20 June

    Google Scholar 

  44. Hah C (2017) Impact of wake dispersion on axial compressor performance. In: Proceedings ASME Turbo Expo 2017: turbomachinery technical conference and exposition, volume 2A: turbomachinery. Paper GT2017-63020, Charlotte, North Carolina, USA, 26–30 June

    Google Scholar 

  45. Kemp NH, Sears WR (1955) The unsteady forces due to viscous wakes in turbomachines. J Aeronaut Sci 22:478–483

    Article  Google Scholar 

  46. Lowson MV (1968) Reduction of compressor noise radiation. J Acoust Soc Am 43(1):37–50

    Article  Google Scholar 

  47. Mailach R, Vogeler K (2002) Experimentelle Untersuchung des instationären Grenzschichtverhaltens auf den Schaufeln eines Niedergeschwindigkeits-Axialverdichters. DGLR Jahrestagung, Paper 2002–071, Deutscher Luft- und Raumfahrtkongress, Stuttgart, Germany, 23–26 September

    Google Scholar 

  48. Goto S, et al. (2005) Investigation on unsteady loadings due to fan rotor-stator interaction. ISABE symposium on airbreathing engines, paper 2005–1140, Munich, Germany

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Grundlagen der Aerodynamik. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_2

Download citation

Publish with us

Policies and ethics