Skip to main content

Optimierungsverfahren

  • Chapter
  • First Online:
Aerodynamik axialer Turbokompressoren
  • 2643 Accesses

Zusammenfassung

In Kapitel Abschn. 14.3 wurde das grundlegende Gleichungssystem der Navier-tokes’schen Gleichungen zusammengefasst dargestellt zu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Shang EB, Wang ZQ (1991) A perspective and effective way to improve the compressor performance. In: Proceeding of international gas turbine congress, IGTC-13, Yokohama 1991

    Google Scholar 

  2. Deich ME, Gubalev AB, Filippov GA, Wang ZQ (1962) A new method of profiling the guide Van Cascade of stage with small ratios diameter to length. Tepli energetika 8:42–46

    Google Scholar 

  3. Filippov GA, Wang ZQ (1963) The calculation of axial symmetric flow in an turbine stage with small ratio of diameter to blade length. J Moscow Power Inst 47:63–78

    Google Scholar 

  4. Wang ZQ, Su JX, Zhong J (1994) The effect of pressure distribution in a three-dimensional flow field on the type of curved blade. In: Proceedings of ASME 1994 international gas turbine and aeroengine congress and exposition, BD 1: turbomachinery, ASME paper 94-GT-400, Den Haag, Holland, 13–16 Juni 1994

    Google Scholar 

  5. Bliss DB, Hayden RP, Murry BS (1976) Design considerations for novel low source noise transonic Fan Stage. In: Proceedings of the 3rd aeroacoustics conference, paper AIAA-1976-577, Palo Alto, Kalifornien, Vereinigte Staaten von Amerika, 20–23 Juli 1976

    Google Scholar 

  6. Lucas RG, Woodard RP, Mackinnon MJ (1978) Acoustic evaluation of a novel swept rotor fan. In: Proceedings of the 11th fluid and plasma dynamics conference, paper AIAA-1978-1121, Seattle, Washington, Vereinigte Staaten von Amerika, 10–12 Juli 1978

    Google Scholar 

  7. Wennerstrom AJ, Frost GR (1976) Design of a 1500ft/sec, transonic, high-trough-flow, single-stage axial-flow compressor with low hub/tip ratio. AFARL-TR-76-59, AD-B016386

    Google Scholar 

  8. Frank BJ, King PI (1994) Effects of leading edge sweep on stall inception in a high-speed single-stage compressor. In: Proceedings of the 30th joint propulsion conference and exhibit, paper AIAA-1994-2696, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 27–29 Juni 1994

    Google Scholar 

  9. Boger KM, King PI, Copenhaver WW (1993) Stall inception in single stage high-speed compressor with straight and swept leading edges. In: Proceedings of the 29th joint propulsion conference and exhibit, paper AIAA-1993-1870, Monterey, Kalifornien, Vereinigte Staaten von Amerika, 28–30 Juni 1993

    Google Scholar 

  10. Köller U, Mönig R, Küsters B, Schreiber H-A (2000a) Development of advanced compressor airfoils for heavy-duty gas turbines – part I: design and optimization. In: Proceedings of ASME 1999 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 99-GT-095, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 7–10 Juni 2000

    Google Scholar 

  11. Köller U, Mönig R, Schreiber H-A (2000b) Development of advanced compressor airfoils for heavy-duty gas turbines – part II: experimental and theoretical analysis. In: Proceedings of ASME 1999 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 99-GT-096, Indianapolis, Indiana, Vereinigte Staaten von Amerika, 7–10 Juni 2000

    Google Scholar 

  12. Bueche D, Guidati G, Stollm P (2003) Automated design optimization of compressor blades for stationary large-scale turbomachinery. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38421, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003

    Google Scholar 

  13. Sieverding F, Ribi B, Casey M, Meyer M (2004) Design of industrial axial compressor blade sections for optimal range and performance. ASME J Turbomach 126(2):323–331

    Article  Google Scholar 

  14. Keskin A, Dutta AK, Bestle D (2006) Modern compressor aerodynamic blading process using multi-objective optimization. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90206, Barcelona, Spanien, 8–11 Mai 2006

    Google Scholar 

  15. Benini E (2004) Neural networks for pattern recognition. Oxford University Press, Oxford

    Google Scholar 

  16. Jang C-M, Kim K-Y (2005) Optimization of blade sweep in a transonic axial compressor rotor. JSME Int J B Fluid Thermal Eng 48(4):793–801

    Article  Google Scholar 

  17. Lian Y, Liou MS (2005) Aerostructural optimization of a transonic compressor rotor. J Propuls Power 22(4):880–888

    Article  Google Scholar 

  18. Ellbrant L, Eriksson L-F, Martensson H (2013) Balancing efficiency and stability in the design of transonic compressor stages. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6B: turbomachinery, paper GT2013-94838, San Antonio, Texas, Vereinigte Staaten von Amerika, 3–7 Juni 2013

    Google Scholar 

  19. Fox RW, McDonald AT, Pritchard PJ (2004) Introduce to fluid mechanics, 6. Aufl. Wiley, Hoboken

    Google Scholar 

  20. Huppertz A, Flassig PM, Swoboda M (2007) Knowledge-based 2D blade design using multi-objective aerodynamic optimisation and a neuronal network. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28204, Montreal, Kanada, 14–17 Mai 2007

    Google Scholar 

  21. Schittkowski K (1986) NLPQL: A Fortran subroutine solving constrained nonlinear programming problems. Ann Oper Res 5(2):485–500

    Article  MathSciNet  Google Scholar 

  22. Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Chichester

    MATH  Google Scholar 

  23. Moberg L, Guidat G, Savic S (2006) Automated blade optimisation and 3D CFD analysis for an axial multistage GT compressor redesign. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90747, Barcelona, Spanien, 8–11 Mai 2006

    Google Scholar 

  24. Box GEP, Draper NR (2007) Response surfaces, mixtures, and ridge analyses. Wiley, Hoboken. ISBN 9780470072769

    Book  Google Scholar 

  25. Kuzmenko ML, Shmotin YN, Egorov IN, Federchin KS (2007) Optimization of the gas turbine engine parts using methods of numerical simulation. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, Montreal, Kanada, 14–17 Mai 2007

    Google Scholar 

  26. Siddappaji K, Turner MG, Merchant A (2012) General capability of parametric 3d blade design tool for turbomachinery. In: ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 8: Turbomachinery, parts A, B, and C, paper GT2012-69756, Kopenhagen, Dänemark, 11–15 Juni 2012

    Google Scholar 

  27. Nemnen AF, Turner MG, Siddappaji K, Galbraith M (2014) A smooth curvature-defined meanline section option for a general turbomachinery geometry generator. In: ASME Turbo Expo 2014: turbine technical conference and exposition, Bd 2B: turbomachinery, paper GT2014-26363, Düsseldorf, Deutschland, 16–20 Juni 2014

    Google Scholar 

  28. Wu JZ, Ma HY, Zhou MD (2006) Vorticity and vortex dynamics. Springer, New York

    Book  Google Scholar 

  29. Wu JZ, Wu H, Li QS (2009) Boundary vorticity flux and engineering flow management. Adv Appl Math Mech 1(3):353–366

    MathSciNet  Google Scholar 

  30. Wu J, Lu X, Yang Y, Zhang R (2010) Vorticity dynamics in complex flow diagnosis and management. In: Proceedings of the 13th Asian congress of fluid mechanics, Dhaka, Bangladesch, 17–21 Dezember 2010

    Google Scholar 

  31. Yang Y, Wu H, Li Q, Zhou S, Wu J (2008) Vorticity dynamics in axial compressor flow diagnosis and design. ASME J Fluid Eng 130(4):041102-1-9

    Article  Google Scholar 

  32. Li Q, Wu H, Guo M, Wu J (2010) Vorticity dynamics in axial compressor flow diagnosis and design – part II: methodology and application of boundary vorticity flux. ASME J Fluid Eng 132(1):011102-1-12

    Google Scholar 

  33. Chen H, Turbner MG, Siddapaji K, Mahmood SMH (2016) Vorticity dynamics based flow diagnosis for a 1,5-stage high pressure compressor with an optimized transonic rotor. In: Proceedings ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-56682, Seoul, Südkorea, 13–17 Juni 2016

    Google Scholar 

  34. Zangeneh M (1991) A compressible three-dimensional design method for radial and mixed flow turbomachinery blades. Int J Numer Methods Fluids 13:599–624

    Article  Google Scholar 

  35. Zangeneh M, Goto A, Harada H (1987) On the design criteria for suppression of secondary flows in centrifugal and mixed flow impellers. In: ASME 1997 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 97-GT-393, Orlando, Florida, Vereinigte Staaten von Amerika, 2–5 Juni 1987

    Google Scholar 

  36. Ashihara K, Goto A (1999) Improvements of pump suction performance using 3D inverse design method. In: Proceedings of the 3rd ASME/JSME joint fluids engineering conference, paper FEDSM99-6846, San Francisco, Kalifornien, 18–23 Juli 1999

    Google Scholar 

  37. Leonard O, Braembussche RA (1992) Design method for subsonic and transonic cascade with prescribed Mach number distribution. ASME J Turbomach 114(3):553–560

    Article  Google Scholar 

  38. Dang TQ, Nerurkar AC, Reddy DR (1997) Design modification of rotor 67 by 3D inverse method – inviscid-flow limit. In: Proceedings of ASME 1997 international gas turbine and aeroengine congress and exhibition, Bd 1: aircraft engine; marine; turbomachinery; microturbines and small turbomachinery, paper 97-GT-484, Orlando, Florida, Vereinigte Staaten von Amerika, 2–5 Juni 1997

    Google Scholar 

  39. Choo BMF, Zangeneh M (2002) Development of an (adaptive) unstructured 2-D inverse design method for turbomachinery blades. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30620, Amsterdam, Holland, 3–6 Juni 2002

    Google Scholar 

  40. Dang T (1995) Inverse method for turbomachine blades using shock-capturing techniques. In: Proceedings of the 31st joint propulsion conference and exhibit, AIAA paper 95-2465, San Diego, Kalifornien, Vereinigte Staaten von Amerika, 10–12 Juli 1995

    Google Scholar 

  41. Demeulenaere A, Leonard O, Braembussche R (1997) A two-dimensional Navier-Stokes inverse solver for compressor and turbine blade design. Proc Inst Mech Eng A 211(Part A):299–307

    Article  Google Scholar 

  42. Tiow W, Zangeneh M (1998) A viscous transonic inverse design method for turbomachinery blades, part I: 2D cascades. In: Proceedings of the ASME 1998 international gas turbine and aeroengine congress and exhibition, Bd 1: turbomachinery, paper 98-GT-125, Stockholm, Schweden, 2–5 Juni 1998

    Google Scholar 

  43. Tiow W, Yiu C, Zangeneh M (2002) Application of simulated annealing to inverse design of transonic turbomachinery Cascades. Proc Inst Mech Eng A 216(1):59–73(15)

    Article  Google Scholar 

  44. Demeulenaere A, Leonard O, Van den Braembussche R (1998) Three-dimensional inverse method for turbomachinery blading design. ASME J Turbomach 120(2):247–255

    Article  Google Scholar 

  45. Watanabe H, Zangeneh M (2003) Design of the blade geometry of swept transonic fans by 3D inverse design. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38770, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003

    Google Scholar 

  46. Medd AJ, Dang TQ, Larosiliere LM (2003) 3D inverse design loading strategy for transonic axial compressor blading. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 6: Turbo Expo 2003, parts A and B, paper GT2003-38501, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19 Juni 2003

    Google Scholar 

  47. Hobbs DE, Weingold HD (1984) Development of controlled diffusion airfoils for multistage compressor application. ASME J Eng Gas Turbine Power 106(2):271–278

    Article  Google Scholar 

  48. Steiner W, Eisenberg B, Starken H (1991) Design and testing of a controlled diffusion airfoil cascade for industrial compressor application. ASME J Turbomach 113(4):583–590

    Article  Google Scholar 

  49. Dunker R, Rechter H, Starken H, Weyer H (1984) Redesign and performance of a transonic axial compressor stator and equivalent plane cascades with subsonic controlled diffusion blades. ASME J Eng Gas Turbine Power 106(2):279–287

    Article  Google Scholar 

  50. Sonoda T, Yamaguchi Y, Arima T, Olhofer M, Sendhoff B, Schreiber H-A (2003) Advanced high tuning compressor airfoils for low Reynolds number condition – part I: design and optimization. ASME J Turbomach 126(3):350–359

    Article  Google Scholar 

  51. Schreiber H-A, Steinert W, Sonoda T, Arima T (2004) Advanced high turning compressor airfoils for low Reynolds number condition – part II: experimental and numerical analysis. ASME J Turbomach 126(4):482–492

    Article  Google Scholar 

  52. Hu P, Choo B, Zangeneh M, Rahmati M (2006) On design of transonic fan rotors by 3D inverse design method. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-91173, Barcelona, Spanien, 8–11 Mai 2006

    Google Scholar 

  53. Mileshin VI, Orekhov IK, Shchipin SK, Startsev AN (2007) 3D inverse design of transonic Fan rotors efficient for a wide range of RPM. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27817, Montreal, Kanada, 14–17 Mai 2007

    Google Scholar 

  54. Mileshin VI, Orekhov IK, Shchipin SK, Startsev AN (2004) New 3D inverse Navier-Stokes based method used to design turbomachinery blade rows. HAT-FED04, Charlotte North Carolina, Vereinigte Staaten von Amerika, HT-FED-2004-56436, 11–15 Juli 2004

    Google Scholar 

  55. Ahmed R, Lawerenz M (2003) On the aeromechanical-design of multistage axial compressors using parallel optimisation algorithms. In: Proceedings of the 16th symposium on airbreathing engines, Number ISABE 2003-17, 31.8.–5.9. 2003, Ohio, Cleveland

    Google Scholar 

  56. Rai M (2004) Multiple-objective optimization with differential evolution and neural networks. NASA Ames Research Centre, VKI Lecture Series

    Google Scholar 

  57. Giannakoglou KC (2004) Neural network assisted evolutionary algorithms in aeronautics and turbomachinery. VKI Lectures

    Google Scholar 

  58. Faller W, Schreck S (1996) Neural networks: applications and opportunities in aeronautics. Prog Aerosp Sci 32(5):433–456

    Article  Google Scholar 

  59. Van den Braembussche RA (2004) Fast multidisciplinary optimisation of turbomachinery components. VKI Lecture Series

    Google Scholar 

  60. Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–435

    Article  MathSciNet  Google Scholar 

  61. Welch WJ, Mitchell TJ, Wynn HP (1992) Screening predicting and computer experiments. Technometrics 34(1):15–25

    Article  Google Scholar 

  62. Voss C, Aulich M, Kaplan B, Nicke E (2006) Automated multi-objective optimization in axial compressor blade design. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90420, Barcelona, Spanien, 8–11 Mai 2006

    Google Scholar 

  63. Dorfner C, Nicke E, Voss C (2007) Axis-asymetric profiled endwall design using multi-objective optimization linked with 3D RANS-flow-simulations. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, GT2007-27268, Montreal, Kanada, 14–17 Mai 2007

    Google Scholar 

  64. Fausett L (1994) Fundamentals of neural networks: architectures, algorithms and applications. Prentice Hall, Englewood Cliffs

    MATH  Google Scholar 

  65. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford

    MATH  Google Scholar 

  66. Ripley BD, Pattern BD (1996) Recognition and neural networks. Cambridge University Press, Cambridge

    Book  Google Scholar 

  67. Lo CF, Shi GZ (1991) Neural network bases expert system for compressor stall monitoring. In: Proceedings of 27th joint propulsion conference, AIAA paper 91-250000, Sacramento, Kalifornien, Vereinigte Staaten von Amerika, 24–26 Juni 1991

    Google Scholar 

  68. Dornberger R, Buece D, Stoll P (2000) Multidisciplinary optimization in turbomachinery design. In: Proceedings of European congress on computational methods in applied sciences and engineering ECCOMAS 2000, Barcelona, Spanien, September 11–14 2000

    Google Scholar 

  69. Pierret S, Demeulenaere A, Gouverner B, Hirsch, Ch (2000) Designing turbomachinery blades with the function approximation concept and the Navier-Stokes equations. In: Proceedings of the 8th AIAA/NASA/USAF/ISSMO symposium on MDO, Long Beach, Kalifornien, Vereinigte Staaten von Amerika, 6–8 September 2000

    Google Scholar 

  70. Vadivelan C, Chandar DDJ (2005) Transonic Airfoil design using artificial neural networks. In: Proceedings of the 8th annual CFD symposium, Bangalore, 2005

    Google Scholar 

  71. Duch W, Jankowski N (2001) Transfer functions: hidden possibilities for better neural networks. In Proceedings of the 9th European symposium on artificial neural networks, Brügge, Belgien, S 81–94, 2001

    Google Scholar 

  72. Aulich M, Siller U (2011) High dimensional constrained multiobjective optimization of a fan stage. In: Proceedings of ASME 2011 Turbo Expo: turbine technical conference and exposition, Bd 7: turbomachinery, parts A, B, and C, paper GT2011-45618, Vancouver, Kanada, 6–10 Juni 2011

    Google Scholar 

  73. Voß C, Aulich M, Raitor T (2014) Meta-model assisted aeromechanical optimization of a transonic centrifugal compressor. In: Proceedings of the 15th international symposium on transport phenomena and dynamics of rotating machinery, ISROMAC-15, Honolulu, Hawaii, 24–28 Februar 2014

    Google Scholar 

  74. Goinis G, Nicke E (2016) Optimizing surge margin and efficiency of a transonic compressor. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57896, Seoul, Südkorea, 13–17 Juni 2016

    Google Scholar 

  75. Heinichen F, Gümmer V, Plas A, Schiffer HP (2011) Numerical investigation of the influence of non-axisymmetric hub contouring on the performance of a shrouded axial compressor stator. CEAS Aeronaut J 2(1):89–98

    Article  Google Scholar 

  76. Piegl L, Tiller W (1997) The NURBS book, Monographs in visual communication, 2. Aufl. Springer, Berlin

    Google Scholar 

  77. Obaida HMB, Kawase M, Rona A, Gostelow JP (2016) Some perspectives on the treatment of three-dimensional flows on axial compressor blading. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57617, Seoul, Südkorea, 13–17 Juni 2016

    Google Scholar 

  78. Reutter O, Hervé S, Nicke E (2009) Automated optimization of the non-axisymmetric hub endwall of the rotor of an axial compressor. In: Proceedings of the 10th European conference on turbomachinery, Lappeenranta, Finnland, S 1–11, 2009

    Google Scholar 

  79. Ma Z (2011) Non-gaussian statistical models and their applications. PhD. Thesis, KTH – Royal Institute of Technology, Stockholm

    Google Scholar 

  80. Devore J (2015) Probability and statistics for engineering and the sciences, 8. Aufl. Cengage Learning, Endover Hampshire

    Google Scholar 

  81. Coquillart S (1990) Extended free-form deformation: a sculpturing tool for 3D geometric modeling. Comput Graph 24(4):187–196

    Article  Google Scholar 

  82. John A, Shahpar S, Qin N (2016) Alleviation of shock-wave effects on a highly loaded axial compressor through novel blade shaping. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57550, Seoul, Südkorea, 13–17 Juni 2016

    Google Scholar 

  83. Ginder R, Calvert W (1987) The Design of an Advanced Civil Fan Rotor. ASME J Turbomach 109(3):340–345

    Article  Google Scholar 

  84. Dunham J (1998) CFD validation for propulsion system components. AGARD advisory report 355, Neuilly-Sur-Seine, France

    Google Scholar 

  85. Chima RV (2009) SWIFT code assessment for two similar transonic. In: Proceedings of the 47th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, Florida, Vereinigte Staaten von Amerika, 5–8 Januar 2009

    Google Scholar 

  86. Shahpar S (2005) SOPHY: an integrated CFD based automatic design optimization system. In: Proceedings of the international symposium on air breathing engines (ISABE), ISABE-2005-1086 München, Deutschland, 4–9 September 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Optimierungsverfahren. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_15

Download citation

Publish with us

Policies and ethics