Skip to main content

Verdichterlärm

  • Chapter
  • First Online:
Aerodynamik axialer Turbokompressoren
  • 2646 Accesses

Zusammenfassung

Die starke Zunahme des Flugverkehrs, verbunden mit der Urbanisierung der Nachbarschaften vieler Flughäfen, führt auf ein zunehmendes Lärmempfinden, so dass der Lärmreduktion eines Flugzeuges und insbesondere der Triebwerke schon während der Entwicklungsphase eine große Bedeutung zukommen. Prinzipiell besteht für die Verdichter im stationären Einsatz dieselbe Problematik, obwohl in diesem Fall durch Kapselung und Schalldämpfer in der Ansaugleitung eine bedeutende Absenkung des Schallpegels erzielbar ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. ACARE (2000) European Aeronautics: a vision for 2020. Advisory Council for Aeronautics Research in Europe

    Google Scholar 

  2. Borradaile JA (1988) Towards the optimum ducted UHBR engine. In: Proceedings 24th joint propulsion conference, paper AIAA-88-2954, Boston, Massachusetts, Vereinigte Staaten von Amerika, 11–13. Juli 1988

    Google Scholar 

  3. Crow DE (2011) A comprehensive approach to engine noise reduction technology. Presented at: ISABE-2001, Bangalore, Indien 2011

    Google Scholar 

  4. Tyler J, Sofrin T (1962) Axial flow compressor noise studies. Trans Soc Automot Eng 70:309–332

    Google Scholar 

  5. Lighthill MJ (1952) On sound generated aerodynamically. I: general theory. Proc R Soc A221:564–587

    MathSciNet  MATH  Google Scholar 

  6. Lighthill MJ (1954) On sound generated aerodynamically. II: turbulence as a source of sound. Proc R Soc A222:1–32

    MathSciNet  MATH  Google Scholar 

  7. Lighthill MJ (1978) Waves in fluids. Cambridge University Press, Cambridge, UK. ISBN 0-521-29233-6

    Google Scholar 

  8. Stahl B (1986) Experimenteller Beitrag zur Schallerzeugung durch die Turbulenz in einer Rohrströmung hinter einer unstetigen Querschnittserweiterung, Dissertation, DFVLR-Fortschrittsbericht 86-06, Köln

    Google Scholar 

  9. Xu K, Qiao W, Tong W, Wie R (2017) Radial mode analysis of broadband noise in flow ducts using azimuthal sensory array. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2C: turbomachinery, paper GT2017-64524, Charlotte, North Carolina, Vereinigte Staaten von Amerika, 26–30. Juni 2017

    Google Scholar 

  10. Chrichton D, Xu L, Hall CA (2006) Preliminary fan design for a silent aircraft. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90564, Barcelona, Spanien, 8–11. Mai 2006

    Google Scholar 

  11. Xu L (2004) Shockwave and noise abatement of transonic fan. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53545, Wien, Österreich, 14–17. Juni 2004

    Google Scholar 

  12. Xu L, Denton JD (2003) Aero-acoustics of modern transonic fans – fan noise reduction from its sources. J Therm Sci 12(2):104–113

    Google Scholar 

  13. Ginder RB, Newby DR (1977) An improved correlation for the broadband noise of high speed fans. J Aircraft 4(9):844–849

    Google Scholar 

  14. Heidmann MF (1979) Interim prediction method for fan and compressor source noise. NASA TM X-71773

    Google Scholar 

  15. Sharland IJ (1964) Source of noise in axial flow fan. J Sound Vib 1(3):302–322

    MATH  Google Scholar 

  16. Fukano T (1977) Noise generated by low pressure axial flow fans. Modeling of the turbulent noise. J Sound Vib 50(8):63–74

    Google Scholar 

  17. Xian-Jun W, Jian-Hua C (2006) An improved calculation model of axial flow fan’s vortex noise. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90047, Barcelona, Spanien 2006

    Google Scholar 

  18. Schewe G (1983) On the force fluctuations acting on a circular cylinder in cross flow from subcritical up to transcritical reynolds numbers. J Fluid Mech 133:265–285

    Google Scholar 

  19. Fukano T, Takamatsu Y, Kodama Y (1986) The effects of tip clearance on the noise of low-pressure axial and mixed flow fans. J Sound Vib 105(2):291–308

    Google Scholar 

  20. Storer JA, Cumpsty NA (1991) Tip leakage flow in axial compressors. J Turbomach 113(2):252–259

    Google Scholar 

  21. Furukawa M, Inoue M, Koroumaru M, Saiki K, Yamada K (1999) The role of tip leakage vortex breakdown in compressor rotor aerodynamics. J Turbomach 121(3):469–480

    Google Scholar 

  22. Fukano T, Jang C (2004) Tip clearance noise of axial flow fans operation at design and off-design condition. J Sound Vib 275(2-3):1027–1050

    Google Scholar 

  23. Jang C, Fukano T, Furukawa M (2003) Effects of the tip clearance on vertical flow and its relation to noise in axial flow fan. JSME Trans B 46:356–365

    Google Scholar 

  24. Quinlan DA, Bent PH (1998) High frequency noise generation in small axial flow fans. J Sound Vib 218(2):177–204

    Google Scholar 

  25. Cumpsty NA (1977) A critical review of turbomachinery noise. ASME J Fluid Eng 99(2):278–293

    Google Scholar 

  26. Powell A (1964) The theory of vortex sound. J Acoust Soc Am 33:177–195

    MathSciNet  Google Scholar 

  27. Powell A (1963) Mechanisms of aerodynamic sound production. AGARD Rep. No. 466

    Google Scholar 

  28. Arakawa C, Fleig O, Makoto I, Masakazu S (2005) Numerical approach for noise reduction of wind turbine blade tip with earth simulator. J Earth Simul 2:11–33

    Google Scholar 

  29. Wright SE (1976) The acoustic spectrum of axial flow machines. J Sound Vib 45(2):165–223

    Google Scholar 

  30. Stuermer A, Yin J (2009) Low-speed aerodynamics and aeroacoustics of cror propulsion systems. In: Proceedings of the 15th AIAA/CEAS aeroacoustics conference, 11.–13. May 2009, Miami Florida US, paper AIAA 2009-3134

    Google Scholar 

  31. Schnell R, Yin J, Voss C, Nicke E (2012) Assessment and optimization of the aerodynamic and acoustic characteristics of a counter rotating open rotor. J Turbomach 134(6):061016

    Google Scholar 

  32. Yin J, Stuermer A, Aversano M (2009) Coupled urans and fw-h analysis of installed pusher propeller aircraft configurations. In: Proceedings of the 15th AIAA/CEAS aeroacoustics conference, 11.–13. May 2009, Miami Florida US, paper AIAA 2009-3332

    Google Scholar 

  33. Busch ER, Kessler M, Kramer E (2012) Numerical investigation of counter-rotating open rotor noise emission in different flight conditions. In: Proceedings of ASME Turbo Expo 2012: turbine technical conference and exposition, Bd 1: aircraft engine; ceramics; coal, biomass and alternative fuels; controls, diagnostics and instrumentation, paper GT2012-68625, Kopenhagen, Dänemark, 11–15. Juni 2012

    Google Scholar 

  34. Guerin S, Moreau A, Menzel C, Weckmueller C (2012) Open-rotor noise prediction with a rans informed analytical method. In: Proceedings of the 18th AIAA/CEAS aeroacoustics conference, paper AIAA 2012-2303, Colorado Springs, Colorado, Vereinigte Staaten von Amerika, 4–6. Juni 2012

    Google Scholar 

  35. Deconinck T, Capron A, Barbieux V, Hirsch C, Ghorbaniasl G (2011) Sensitivity study on computational parameters for the prediction of noise generated by counter-rotating open rotors. In: Proceedings of the 17th AIAA/CEAS aeronautics conference, paper AIAA 2011-2765, Portland, Oregon, Vereinigte Staaten von Amerika, 5–8. Juni 2011

    Google Scholar 

  36. Weckmueller C, Guerin S (2012) On the influence of trailing-edge serrations on open-rotor total noise. In: Proceedings of the 18th AIAA/CEAS aeroacoustics conference, paper AIAA 2012-2124, Colorado Springs, Colorado, Vereinigte Staaten von Amerika, 4–6. Juni 2012

    Google Scholar 

  37. Richaud J, Julliard E, Omais M, Regnier V, Parry A, Baralon S (2010) Installation effects on contra-rotating open rotor noise. AIAA/CEAS aeroacoustics conference, paper AIAA2010-3795, Stockholm, Schweden, 7–9. Juni 2010

    Google Scholar 

  38. Tormen D, Giannattasio P, Zanon A, Kühnelt H, De Gennaro M (2017) Application of a RANS-informed analytical model for fast noise prediction of contra rotating open rotors. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2C: turbomachinery, paper GT2017-64162, Charlotte, North Carolina, Vereinigte Staaten von Amerika, 26–30. Juni 2017

    Google Scholar 

  39. Zacharias A, Hall C (2011) Application of a Navier-Stokes solver to the study of open rotor aerodynamics. ASME J Turbomac 133(3):11

    Google Scholar 

  40. Zacharias A, Hall C, Parry A (2013) Contrarotating open rotor operation for improved aerodynamics and noise at takeoff. J Turbomach 135(3):031010

    Google Scholar 

  41. Delattre G, Falissard F (2015) Influence of torque-ratio on counter-rotating open-rotor interaction noise. AIAA J 53(9):2726–2738

    Google Scholar 

  42. Stapelfeldt S, Parry A, Vahdati M (2015) Validation of time domain single-passage methods for the unsteady simulation of contra-rotating open rotor. Proc Inst Mech Eng A 229(5):443–453

    Google Scholar 

  43. Peters A, Spakovszky ZS (2011) Rotor interaction noise in counter-rotating propfan propulsion systems. ASME J Turbomac 134(1):011002

    Google Scholar 

  44. Akkermans RAD, Stuermer A, Delfs JW (2016) Active flow control for interaction noise reduction of contra rotating open rotors. AIAA J 54(4):1413–1423

    Google Scholar 

  45. Lowson MV (1992) Assessment and prediction of wind turbine noise, flow solution resort 92/19. ETSU W/13/00284/REP, S 1–59

    Google Scholar 

  46. Madison RD (1949) Fan engineering (handbook), 5. Aufl. Buffalo Forge Company, New York

    Google Scholar 

  47. Eck B (1991) Ventilatoren. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  48. Mugridge BD (1973) Broadband noise generation by airfoils and axial flow fans. AIAA paper 73-1018

    Google Scholar 

  49. Carolus T (2003) Ventilatoren. Teubner, Stuttgart/Leipzig/Wiesbaden

    Google Scholar 

  50. Legerton ML, Stoneman SAT, Parker R (1991) An experimental investigation into flow induced acoustic resonances in an annular cascade. ImechE 1991:C416/060

    Google Scholar 

  51. Parker R, Stoneman SAT (1987) An experimental investigation of the generation and consequences of acoustic waves in an axial-flow compressor: The effect of variations in the axial spacing between blade rows. J Sound Vib 116(3):509–525

    Google Scholar 

  52. Parker R, Stoneman SAT (1989) The excitation and consequences of acoustic resonances in enclosed fluid flow around solid bodies. Proc Inst Mech Eng C J Mech Eng Sci 203(1):9–19

    Google Scholar 

  53. Parker R (1966) Resonance effects in wake shedding from parallel plates: some experimental observations. J Sound Vib 4(1):62–72

    Google Scholar 

  54. Parker R (1967) Resonance effects in wake shedding from parallel plates: calculation of resonant frequencies. J Sound Vib 5(2):330–343

    Google Scholar 

  55. Parker R (1984) Acoustic resonances and blade vibration in axial flow compressors. J Sound Vib 92(4):529–539

    Google Scholar 

  56. Cumpsty NA, Whitehead DS (1971) The Excitation of acoustic resonances by vortex sheeding. J Sound Vib 18(3):353–369

    Google Scholar 

  57. Hellmich B, Seume JR (2006) Causes of acoustic resonance in a high-speed axial compressor. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90947, Barcelona, Spanien, 8–11. Mai 2006

    Google Scholar 

  58. Kameier F (2001) Experimentelle Untersuchungen strömungserregter Schaufelschwingungen bei Axialverdichtern. Abschlussbericht AIF FKZ 1700599

    Google Scholar 

  59. Camp TR (1999) A study of acoustic resonance in a low-speed multistage compressor. ASME J Turbomac 121(1):36–43

    Google Scholar 

  60. Ziada S, Oengören A, Vogel A (2002) Acoustic resonance in the inlet scroll of a turbo-compressor. J Fluid Struct 16(3):361–373

    Google Scholar 

  61. Kielb RE (2003) Blade Excitation by aerodynamic instabilities – a compressor blade study. In: Proceedings of ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference, Bd 4: Turbo Expo 2003, paper GT2003-38634, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–19. Juni 2003

    Google Scholar 

  62. Vignau-Tuquet F, Girardeau D (2005) Aerodynamic rotating vortex instability in a multi-stage axial compressor. 17th ISABE, München, Deutschland 2005

    Google Scholar 

  63. Cyrus V, Rehak K, Polansky J (2005) Aerodynamic causes of stator vanes damage of the Alstom gas turbine compressor in the gasification combined cycle using brown coal. In: OPE – 094 03 / 15, proceedings of ETC 6, 6th conference on turbomachinery, fluid dynamics and thermodynamics, Lille, France 2005

    Google Scholar 

  64. Hellmich B, Seume JR (2004) Acoustic resonance in a four stage high-speed axial compressor. In: Proceedings of ISRROMAC, international symposium on transport phenomena and dynamics of rotating machinery, paper ISROMAC10-2004-004, Honolulu, Vereinigte Staaten von Amerika, März 2004

    Google Scholar 

  65. Hellmich B, Braun M, Fischer A, Seume JR (2003) Observations on the causal relationship between blade count and developing rotating stall in a four stage axial compressor. In: Proceedings of the 5th European conference on turbomachinery, Prag, Tschechien 2003

    Google Scholar 

  66. Rizk W, Seymour DF (1964) Investigations into the failure of gas circulators and circuit components at Hinkley Point Nuclear Power Station. Proc Inst Mech Eng 179(1), No. 21:627–703

    Google Scholar 

  67. Von Heesen W (1997) Experimentelle Untersuchungen nicht-drehklangbezogener tonaler und breitbandig-rauschartiger Störgeräusche bei Radial- und Axialventilatoren. Abschlussbericht zum Forschungsvorhaben AiF 1004768

    Google Scholar 

  68. Ulbricht I (2001) Stabilität des stehenden Ringgitters. Dissertation, TU Berlin. http://edocs.tuberlin.de/diss/2001/ulbricht_iris.pdf. Zugegriffen am 05.11.2019

  69. Weidenfeller J, Lawerenz M (2002) Time resolved measurements in an annular compressor cascade with high aerodynamic loading. In: Proceedings of ASME Turbo Expo 2002: power for land, sea, and air, Bd 5: Turbo Expo 2002, parts A and B, paper GT2002-30439, Amsterdam, Niederlande, 3–6. Juni 2002

    Google Scholar 

  70. Heckl M (1969) Strömungsgeräusche. VDI Fortschrittsberichte, Reihe 7, Nr. 20

    Google Scholar 

  71. Neise W (1986) Lärm und Lärmbekämpfung bei Ventilatoren – Eine Bestandsaufnahme. DFVLR-Fortschrittbericht 80–16, Köln

    Google Scholar 

  72. Ffwocs Williams JE, Hawkings D (1969) Sound generation by turbulence and surfaces in arbitrary motion. Philos Trans R Soc Lond 264(1151):321–342

    MATH  Google Scholar 

  73. Farassat F (1996) Introduction to generalized functions with applications in aerodynamics and aeroacoustics. NASA Technical Paper 3428

    Google Scholar 

  74. Heinemann T, Scheit C, Müller S, Springer M, Becker S (2012) Implementierung einer Ffowcs Williams and Hawkings Methode für bewegte Oberflächen. DAGA 2012, Darmstadt

    Google Scholar 

  75. Farassat F (2007) Derivation of formulations 1 and 1A of Farassat. Technical Report NASA/TM-2007-214853, NASA Langley Research Centre

    Google Scholar 

  76. Brès GA, Brentner KS, Perez G, Jones HE (2004) Maneuvering rotorcraft noise prediction. J Sound Vib 275(3:5):719–738

    Google Scholar 

  77. Kendall-Torry C, Danner F (2016) Investigations on direct and hybrid sound predictions. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57612, Seoul, Südkorea, 13–17. Juni 2016

    Google Scholar 

  78. Singer BA, Lockard DP, Lilley GM (2003) Hybrid acoustic predictions. Comput Math Appl 46(4):647–669

    MATH  Google Scholar 

  79. Brentner KS, Farassat F (2003) Modelling aerodynamically generated sound of helicopter rotors. Prog Aerosp Sci 39(2-3):83–120

    Google Scholar 

  80. Prasad D, Feng J (2004) Propagation and Decay of Shock Waves in Turbofan Engine Inlets. In: Proceedings of ASME Turbo Expo 2004: power for land, sea, and air, Bd 5: Turbo Expo 2004, parts A and B, paper GT2004-53949, Wien, Österreich, 14–17. Juni 2004

    Google Scholar 

  81. Morfey CL (1971) Acoustic energy in nonuniform flows. J Sound Vib 14(2):159–170

    MATH  Google Scholar 

  82. Goldstein ME (1976) Aeroacoustics. McGraw-Hill, New York

    MATH  Google Scholar 

  83. Dowling AP (1996) Acoustic of unstable flows. In: Tatsumi T, Watanabe E, Kambe T (Hrsg) Theoretical and applied mechanics. Elsevier, Amsterdam

    Google Scholar 

  84. Rumsey C, Biedron R, Farassat F (1998) Ducted fan engine acoustic predictions using a Navier-Stokes code. J Sound Vib 213(4):643–664

    Google Scholar 

  85. Polacsek C, Debois-Lavergne F (2003) Fan interaction noise reduction using a wake generator: experiments and computational aeroacoustics. J Sound Vib 265(4):725–743

    Google Scholar 

  86. Maaloum A, Kouidri S, Rey R (2004) Aeroacoustic performance evaluation of axial flow fans based on unsteady pressure field on the blade surface. Appl Acoust 65(4):367–384

    Google Scholar 

  87. Ozyoruk Y, Alpman E, Ahuja V, Long L (2004) Frequency-domain prediction of turbofan noise radiation. J Sound Vib 270(4–5):933–950

    Google Scholar 

  88. Moroianu D, Karlsson A, Fuchs L (2005) LES of the flow and acoustics generated by an aircraft fan running in the vicinity of the ground. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68397, Reno, Nevada, Vereinigte Staaten von Amerika, 6–9. Juni 2005

    Google Scholar 

  89. Boncinelli P, Marconcini M, Poli F, Arnone A, Schipani C (2006) Time-Linearized quasi-3D tone noise computations in cascade flows. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90080, Barcelona, Spanien, 8–11. Mai 2006

    Google Scholar 

  90. Giles MB, (1988) Non-reflecting boundary conditions for the Euler Equations. Technical Report CFDL-TR-88-1

    Google Scholar 

  91. Martinelli L, Jameson A (1988) Validation of a multigrid method for the Reynolds averaged equations. In: Proceedings of AIAA 26th aerospace sciences meeting, AIAA paper 88-0414, Reno, Nevada, Vereinigte Staaten von Amerika, 11–14. Januar 1988

    Google Scholar 

  92. Swanson R, Turkel E (1987) Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations. In: Proceedings of AIAA 8th computational fluid dynamic conference, AIAA paper 87.1107.CP, Honolulu Hawaii, 9–11. Juni 1987

    Google Scholar 

  93. Swanson R, Turkel E (1993) Aspects of a high-resolution scheme for the Navier-Stokes equations. In: Proceedings of AIAA 11th computational fluid dynamics conference, AIAA paper 93.3372.CP, Orlando, Florida, 6–9. Juli 1993

    Google Scholar 

  94. Turkel E (1988) Improving the accuracy of central difference schemes. Technical Report ICASE 88-53

    Google Scholar 

  95. Turkel E, Vatsa V (1994) Effect of artificial viscosity on three-dimensional flow solution. AIAA J 31(1):39–45

    MATH  Google Scholar 

  96. Whitehead DS (1987) Classical two-dimensional methods. In: Platzer M, Carta F (eds) AGARD manual on aeroelasticity in axial flow in turbomachines, Vol 1, Unsteady turbomachinery aerodynamics, Volume AGARD-AG-298

    Google Scholar 

  97. Corsini A, Perugini B, Rispoli F, Sheard AG, Kinghorn IR (2007) Aerodynamic workings of blade tip end-plates designed for low-noise operation in axial flow fans. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27465

    Google Scholar 

  98. Mocket Ch, Fuchs M, Kramer F, Michel U, Thiele F, Steger M (2017) Further development and initial Validation of innovative DES-based approaches for prediction of jet noise installation effects. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2C: turbomachinery, paper GT2017-65253, Charlotte, North Carolina, Vereinigte Staaten von Amerika, 26–30. Juni 2017

    Google Scholar 

  99. Woodward RP, Lucas JG (1976) Acoustic and aerodynamic performance of a 1.83 meter diameter 1.25 pressure ratio fan (QF-8). NASA TN D-8130 TN D-8130, Februar 1976

    Google Scholar 

  100. Wadia AR, Szucs PN, Crall DW (1998) Inner workings of aerodynamic sweep. ASME J Turbomac 120(4):671–682

    Google Scholar 

  101. Corsini A, Rispoli F (2004) Using sweep to extend stall-free operational range in sub-sonic axial fan rotors. Proc Inst Mech Eng A 218(3):129–139

    Google Scholar 

  102. Takata H, Tsukuda Y (1977) Stall margin improvement by casing treatment – its mechanism and effectiveness. ASME J Eng Power 99(1):121–133

    Google Scholar 

  103. Smith GDJ, Cumpsty NA (1984) Flow phenomena in compressor casing treatment. ASME J Eng Gas Turb Power 106(3):532–541

    Google Scholar 

  104. Thompson DW, King PI, Rabe DC (1998) Experimental and computational investigation on stepped tip gap effects on the flowfield of a transonic axial-flow compressor rotor. ASME J Turbomac 120:477–486

    Google Scholar 

  105. Jensen CE (1986) Axial-flow fan. US Patent No. 4,630,993

    Google Scholar 

  106. Corsini A, Perugini B, Rispoli F, Kinghorn I, Sheard AG (2006) Investigation on improved blade tip concept. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90592, Barcelona, Spanien, 8–11. Mai 2006

    Google Scholar 

  107. Longet CML (2003) Axial flow fan with noise reducing means. US Patent 2003/0123987 A1

    Google Scholar 

  108. Mimura M (2003) Axial flow fan. US Patent 6,648,598 B2

    Google Scholar 

  109. Uselton RB, Cook LJ, Wright T (2005) Fan with reduced noise generation. US Patent 2005/0147496 A1

    Google Scholar 

  110. Morfey CL, Fisher MJ (1970) Shock-wave radiation from a supersonic ducted rotor. Aero J Roy Aero Soc 74:579–585

    Google Scholar 

  111. Woodward RP, Gazzaniga JA, Bartos LJ (2002) Acoustic benefits of stator sweep and lean for a high tip speed fan. In: Proceeding of the 40th AIAA aerospace sciences meeting and exhibit, paper AIAA-2002-1034, Reno, Nevada, Vereinigte Staaten von Amerika, 14–17. Januar 2002

    Google Scholar 

  112. Bonneau V, Polacsek C, Barrier R, Lewy S (2014) Prediction of harmonic sound power generated by a modern turbofan with heterogeneous OGV and internal bifurcations. In: Proceedings of the 20th AIAA/CEAS aeroacoustics conference, paper AIAA 2014-3054, Atlanta, Georgia, Vereinigte Staaten von Amerika, 16–20. Juni 2014

    Google Scholar 

  113. Yuri K, Victor M (2013) Experimental study of 700 mm fan model noise at CIAM anechoic chamber. In: Proceedings of ASME Turbo Expo 2013: turbine technical conference and exposition, Bd 6C: turbomachinery, paper GT2013-94454, San Antonio, Texas, Vereinigte Staaten von Amerika, 3–7. Juni 2013

    Google Scholar 

  114. Rossikhin A, Pankov S, Mileshin V (2016) Numerical investigation of the first booster stage noise of a high bypass ratio turbofan. In: Proceedings of ASME Turbo Expo 2016: turbomachinery technical conference and exposition, Bd 2A: turbomachinery, paper GT2016-57352, Seoul, Südkorea, 13–17. Juni 2016

    Google Scholar 

  115. Rossikhin A, Druzhinin L, Khaletskii I, Mileshin V (2017) Numerical and experimental investigation of acoustic characteristics of a fan model with struts integrated in a stator. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2C: turbomachinery, paper GT2017-63449, Charlotte, North Carolina, Vereinigte Staaten von Amerika, 26–30. Juni 2017

    Google Scholar 

  116. Hughes CE, Woodward RP, Podboy GG, Jeracki RJ (2005) The effect of bypass nozzle exit area on fan aerodynamic performance and noise in a model turbofan simulator. In: Proceedings of ASME Turbo Expo 2005: power for land, sea, and air, Bd 6: Turbo Expo 2005, parts A and B, paper GT2005-68573, Reno, Nevada, Vereinigte Staaten von Amerika, 6–9. Juni 2005

    Google Scholar 

  117. Weir DS (2003) Design and test of fan/Nacelle models, quiet high speed fan. NASA CR-2003-212370

    Google Scholar 

  118. Podboy GG, Sutliff DL, Krupar MJ, Horvath C (2007) Shock characteristics measured upstream of both a forward-swept and an aft-swept Fan. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27338, Montreal, Kanada, 14–17. Mai 2007

    Google Scholar 

  119. Shah PN, Mobed DD, Spakovszky ZS (2007) A novel turbomachinery air-brake concept for quiet aircraft. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-27635, Montreal, Kanada, 14–17. Mai 2007

    Google Scholar 

  120. Meslioui S-A, Cunningham M, Germain P (2007) Determination of CFD turbulence scales for lobed mixer jet noise prediction. In: Proceedings of ASME Turbo Expo 2007: power for land, sea, and air, Bd 6: Turbo Expo 2007, parts A and B, paper GT2007-28334, Montreal, Kanada, 14–17. Mai 2007

    Google Scholar 

  121. Teixeira A, Naylor E, Ivey PC, Sheard AG, Kinghorn IR (2006) Numerical analysis of an industrial fan fitted with noise reduction devices. In: Proceedings of ASME Turbo Expo 2006: power for land, sea, and air, Bd 6: turbomachinery, parts A and B, paper GT2006-90845, Barcelona, Spanien 2006

    Google Scholar 

  122. Tam CKW, Kurbatskii KA, Ahuja KK, Gaeta RJ Jr (2001) A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners. J Sound Vib 245(3):545–557

    Google Scholar 

  123. Zhang Q, Bodony DJ (2011) Numerical simulation of two-dimensional acoustic liners with high-speed grazing flow. AIAA J 49(2):365–382

    Google Scholar 

  124. Mendez S, Eldredge JD (2009) Acoustic modeling of perforated plates with bias flow for Large-Eddy-Simulations. J Comput Phys 228(13):4757–4772

    MATH  Google Scholar 

  125. Roche JM, Leylekian L, Delattre G, Vuillot F (2009) Aircraft fan noise absortion: DNS of the acoustic dissipation of resonant liners. In: Proceedings of 15th AIAA/CEAS aeroacoustics conference, 11.–13. May 2009, Miami Florida US, paper no. AIAA 2009-3146, S 1–16

    Google Scholar 

  126. Ramdani S, Yamasaki N, Inokuchi Y, Ishii T (2017) Large Eddy simulation of conventional and bias flow acoustic liners. In: Proceedings of ASME Turbo Expo 2017: turbomachinery technical conference and exposition, Bd 2C: turbomachinery, paper GT2017-63693, Charlotte, North Carolina, Vereinigte Staaten von Amerika, 26–30. Juni 2017

    Google Scholar 

  127. ISO 10534-2 (1998) International standard organization – acoustics – determination of sound absorption coefficient and impedance in impedance tubes – part 2: transfer-function method

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F. (2020). Verdichterlärm. In: Aerodynamik axialer Turbokompressoren. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-28937-9_13

Download citation

Publish with us

Policies and ethics