Skip to main content

Core components of automated driving – algorithms for situation analysis, decision-making, and trajectory planning

  • Conference paper
  • First Online:
Automatisiertes Fahren 2019

Zusammenfassung

Automated driving is a key technology for the future of transportation. There are several motivations to develop automated vehicles. First and foremost, it promises to reduce the number of traffic accidents. Figure 1 shows the accidents recorded by the German police over the past years ([1]) ranging back to 1960.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Polizeilich erfasste Unfälle, Statistisches Bundesamt (Destatis), 2019. In www.destatis.de (Thematische Recherche: Zahlen & Fakten – Wirtschaftsbereiche – Transport & Verkehr – Verkehrsunfälle – Dokumentart: Tabelle). Abrufdatum: 06.02.2019

  2. C. Wissing, T. Nattermann, K. H. Glander and T. Bertram, “Interaction-Aware Long-term Driving Situation Prediction,” in IEEE International Conference on Intelligent Transportation Systems 2018

    Google Scholar 

  3. S. Lefevre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assessment for intelligent vehicles,” ROBOMECH Journal, vol. 1, no. 1, p. 1, Jul 2014.

    Google Scholar 

  4. T. Gindele, S. Brechtel, and R. Dillmann, “A probabilistic model for estimating driver behaviors and vehicle trajectories in traffic environments,” in 13th International IEEE Conference on Intelligent Transportation Systems, Sept 2010, pp. 1625–1631.

    Google Scholar 

  5. M. Schreier, V. Willert, and J. Adamy, “An integrated approach to maneuverbased trajectory prediction and criticality assessment in arbitrary road environments,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 10, pp. 2751–2766, Oct 2016.

    Article  Google Scholar 

  6. M. Bahram, C. Hubmann, A. Lawitzky, M. Aeberhard, and D. Wollherr, “A combined model- and learning-based framework for interaction-aware maneuver prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 6, pp. 1538–1550, June 2016.

    Article  Google Scholar 

  7. M. Koschi and M. Althoff, “Interaction-aware occupancy prediction of road vehicles,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–8.

    Google Scholar 

  8. D. S. Gonzalez, V. Romero-Cano, J. S. Dibangoye, and C. Laugier, “Interaction-aware driver maneuver inference in highways using realistic driver models,” in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Oct 2017, pp. 1–8.

    Google Scholar 

  9. M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Phys. Rev. E, vol. 62, pp. 1805–1824, Aug 2000.

    Article  Google Scholar 

  10. A. Kesting, M. Treiber, and D. Helbing, “General lane-changing model mobil for car-following models,” Transportation Research Record, vol. 1999, no. 1, pp. 86–94, 2007.

    Article  Google Scholar 

  11. M. Schmidt, C. Manna, J. Braun, C. Wissing, M. Mohamed and T. Bertram, “An Interaction-Aware Lane Change Behavior Planner for Automated Vehicles on Highways based on Polygon Clipping,” in IEEE Robotics and Automation Letters

    Google Scholar 

  12. M. Werling, J. Ziegler, S. Kammel and S. Thrun, “Optimal Trajectory Generation for Dynamic Street Scenarios in a Frenét Frame,” in IEEE International Conference on Robotics and Automation 2010

    Google Scholar 

  13. C. Richter, A. Bry and N. Roy, “Polynomial Trajectory Planning for Aggressive Quadrotor Flight in Dense Indoor Environments,” in International Symposium ISRR 2016

    Google Scholar 

  14. C. Richter, A. Bry and N. Roy, “Polynomial trajectory planning for quadrotor flight,” in IEEE International Conference on Robotics and Automation 2013

    Google Scholar 

  15. B. Paden, M. Cap, S. Z. Yong, D. Yershov and E. Frazzoli, “A survey of motion planning and control techniques for self-driving urban vehicles,” in IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

    Article  Google Scholar 

  16. D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review of motion planning techniques for automated vehicles,” in IEEE Transactions on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145, 2016

    Article  Google Scholar 

  17. S. M. LaValle, “Rapidly-exploring random trees: A new tool for path planning,” Ph.D. dissertation, Iowa State University, Oct. 1998

    Google Scholar 

  18. M. McNaughton, C. Urmson, J. M. Dolan, and J.-W. Lee, “Motion planning for autonomous driving with a conformal spatiotemporal lattice,” in IEEE International Conference on Robotics and Automation (ICRA), pp. 4889–4895, 2011.

    Google Scholar 

  19. J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for bertha — a local, continuous method,” in IEEE Intelligent Vehicles Symposium (IV), pp. 450–457, 2014.

    Google Scholar 

  20. C. Götte, M. Keller, T. Nattermann, C. Haß, K.-H. Glander, and T. Bertram, “Spline-based motion planning for automated driving,” in Proceedings of the 20th IFAC World Congress, pp. 9444–9449, 2017.

    Google Scholar 

  21. C. Lienke, M. Keller, K.-H. Glander, and T. Bertram, “An ad-hoc samplingbased planner for on-road automated driving,” in IEEE International Conference on Intelligent Transportation Systems (ITSC), pp. 2371–2376, 2018.

    Google Scholar 

  22. C. Wissing, T. Nattermann, K.-H. Glander, A. Seewald, and T. Bertram, “Environment simulation for the development, evaluation and verification of underlying algorithms for automated driving,” in AmE 2016 – Automotive meets Electronics; 7th GMM-Symposium, pp. 9–14, 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lienke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lienke, C. et al. (2020). Core components of automated driving – algorithms for situation analysis, decision-making, and trajectory planning. In: Bertram, T. (eds) Automatisiertes Fahren 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-27990-5_17

Download citation

Publish with us

Policies and ethics