Skip to main content

Vehicle side-slip angle estimation with deep neural network and sensor data fusion

  • Conference paper
  • First Online:
10th International Munich Chassis Symposium 2019

Part of the book series: Proceedings ((PROCEE))

Abstract

Modern chassis control systems, advanced driver assistance systems (ADAS) and automated driving systems that demand a precise vehicle localization or a reasonable trajectory planning desire a highly accurate and reliable vehicle state estimation. However, the traditional methods such as Kalman and RLS filter, which based on the vehicle dynamic model, mainly rely on the differential equations that approximate the vehicle behaviour in reality [1, 27, 31]. The vehicle dynamics is such a nonlinear and multidimensional system with numerous parameters, which makes it very difficult to adapt the parameters in different situations and figure out appropriate model equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • [1] Anton Obermüller, Modellbasierte Fahrzustandsschätzung zur Ansteuerung einer aktiven Hinterachskinematik, Dissertation, TU München, 2012.

    Google Scholar 

  • [2] Baumgarten Goetz, Verfahren zur Erzeugung eines Schwimmwinkelsignals, 14.06.2012.

    Google Scholar 

  • [3] J. Bechtoff, L. Koenig, and R. Isermann, “Cornering Stiffness and Sideslip Angle Estimation for Integrated Vehicle Dynamics Control,” IFAC-PapersOnLine, vol. 49, no. 11, pp. 297–304, 2016.

    Google Scholar 

  • [4] B. L. Boada, M.J.L. Boada, and V. Diaz, “Vehicle sideslip angle measurement based on sensor data fusion using an integrated ANFIS and an Unscented Kalman Filter algorithm,” Mechanical Systems and Signal Processing, 72-73, pp. 832–845, 2016.

    Google Scholar 

  • [5] A. Brunker, T. Wohlgemuth, M. Frey et al., “Odometry 2.0: A Slip-Adaptive EIF-Based Four-Wheel-Odometry Model for Parking,” IEEE Transactions on Intelligent Vehicles, p. 1, 2019.

    Google Scholar 

  • [6] R. Clark, S. Wang, H. Wen et al., “VINet: Visual-Inertial Odometry as a Sequence-to-Sequence Learning Problem,” 1/29/2017.

    Google Scholar 

  • [7] B. D. Lucas and T. Kanade, “An Iterative Image Registration Technique with an Application to Stereo Vision (IJCAI),” vol. 81, 1981.

    Google Scholar 

  • [8] J. Engel, J. Stuckler, and D. Cremers, “Large-scale direct SLAM with stereo cameras,” in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1935–1942, IEEE, 28.09.2015 - 02.10.2015.

    Google Scholar 

  • [9] A. Eskandarian, Handbook of Intelligent Vehicles, Springer London, London, 2012.

    Google Scholar 

  • [10] G. Farnebäck, “Two-Frame Motion Estimation Based on Polynomial Expansion,” in Image Analysis, J. Bigun and T. Gustavsson, Eds., pp. 363–370, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

    Google Scholar 

  • [11] P. Fischer, A. Dosovitskiy, E. Ilg et al., “FlowNet: Learning Optical Flow with Convolutional Networks,” 4/26/2015.

    Google Scholar 

  • [12] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning, The MIT Press, Cambridge, Massachusetts, London, England, 2016.

    Google Scholar 

  • [13] T. Graber, S. Lupberger, M. Unterreiner et al., “A Hybrid Approach to Side-Slip Angle Estimation with Recurrent Neural Networks and Kinematic Vehicle Models,” IEEE Transactions on Intelligent Vehicles, p. 1, 2018.

    Google Scholar 

  • [14] J. Graeter, A. Wilczynski, and M. Lauer, “LIMO: Lidar-Monocular Visual Odometry,” 7/19/2018.

    Google Scholar 

  • [15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

    Google Scholar 

  • [16] E. Ilg, N. Mayer, T. Saikia et al., “FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks,” 12/6/2016.

    Google Scholar 

  • [17] Jonathan Horgan, Patrick McDaid, and Petros Kapsalas, Verfahren zum Bestimmen eines Bewegungsparameters eines Kraftfahrzeugs durch Auffinden von invarianten Bildregionen in Bildern einer Kamera des Kraftfahrzeugs, Kamerasystem und Kraftfahrzeug, 28.12.2012.

    Google Scholar 

  • [18] D. Kellner, M. Barjenbruch, J. Klappstein et al., “Instantaneous ego-motion estimation using multiple Doppler radars,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 1592–1597, IEEE, 5/31/2014 - 6/7/2014.

    Google Scholar 

  • [19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” 12/22/2014.

    Google Scholar 

  • [20] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

    Google Scholar 

  • [21] J. Ku, M. Mozifian, J. Lee et al., “Joint 3D Proposal Generation and Object Detection from View Aggregation,” 2018.

    Google Scholar 

  • [22] M. Maaref, J. Khalife, and Z. M. Kassas, “Lane-Level Localization and Mapping in GNSS-Challenged Environments by Fusing Lidar Data and Cellular Pseudoranges,” IEEE Transactions on Intelligent Vehicles, p. 1, 2018.

    Google Scholar 

  • [23] Mirek Göbel, Verfahren zum Bestimmen des Fahrzustands eines zweispurigen Fahrzeugs durch SchwimmwinkelSchätzung, 02.03.2006.

    Google Scholar 

  • [24] T. Miyasaka, Y. Ohama, and Y. Ninomiya, “Ego-motion estimation and moving object tracking using multi-layer LIDAR,” in 2009 IEEE Intelligent Vehicles Symposium, pp. 151–156, IEEE, 6/3/2009 - 6/5/2009.

    Google Scholar 

  • [25] P. Munro, H. Toivonen, G. I. Webb et al., “Bias Variance Decomposition,” in Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds., pp. 100–101, Springer US, Boston, MA, 2010.

    Google Scholar 

  • [26] R. Mur-Artal and J. D. Tardos, “ORB-SLAM2: an Open-Source SLAM System for Monocular, Stereo and RGB-D Cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

    Google Scholar 

  • [27] K. Nam, S. Oh, H. Fujimoto et al., “Estimation of Sideslip and Roll Angles of Electric Vehicles Using Lateral Tire Force Sensors Through RLS and Kalman Filter Approaches,” IEEE Transactions on Industrial Electronics, vol. 60, no. 3, pp. 988–1000, 2013.

    Google Scholar 

  • [28] T. Novi, R. Capitani, and C. Annicchiarico, “An integrated artificial neural network– unscented Kalman filter vehicle sideslip angle estimation based on inertial measurement unit measurements,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 14, 095440701879064, 2018.

    Google Scholar 

  • [29] N. Paragios, Y. Chen, and O. Faugeras, Handbook of Mathematical Models in Computer Vision, Springer-Verlag, s.l., 2006.

    Google Scholar 

  • [30] R. Rajamani, Vehicle dynamics and control, Springer, New York, NY, 2012.

    Google Scholar 

  • [31] Rudolf Ertlmeier, Modellbasierte und fahrdynamikunterstützte Überschlagserkennung, Dissertation, Otto-von-Guericke-Universität Magdeburg, 2013.

    Google Scholar 

  • [32] D. Schramm, M. Hiller, and R. Bardini, Vehicle dynamics: Modeling and simulation, Springer, Berlin, 2018.

    Google Scholar 

  • [33] D. Selmanaj, M. Corno, G. Panzani et al., “Robust Vehicle Sideslip Estimation Based on Kinematic Considerations,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14855–14860, 2017.

    Google Scholar 

  • [34] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics, MIT Press, Cambridge, Mass., 2006.

    Google Scholar 

  • [35] R. Wang, M. Schwörer, and D. Cremers, “Stereo DSO: Large-Scale Direct Sparse Visual Odometry with Stereo Cameras,” 8/25/2017.

    Google Scholar 

  • [36] K. Zindler, N. Geiss, K. Doll et al., “Real-time ego-motion estimation using Lidar and a vehicle model based Extended Kalman Filter,” in 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 431–438, IEEE, 10/8/2014 - 10/11/2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuran Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y., Müller, S., Rolle, D., Ganesch, D., Schaffer, I. (2020). Vehicle side-slip angle estimation with deep neural network and sensor data fusion. In: Pfeffer, P. (eds) 10th International Munich Chassis Symposium 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26435-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-26435-2_15

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-26434-5

  • Online ISBN: 978-3-658-26435-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics