Skip to main content

Quasi-static and dynamic suspension measurements vs. multi-body and real‑time simulation results

  • Conference paper
  • First Online:
10th International Munich Chassis Symposium 2019

Part of the book series: Proceedings ((PROCEE))

  • 2060 Accesses

Abstract

The aim of real-time models is, on the one hand, to improve driving dynamics and ride performance and, on the other hand, to be able to be used in driving simulators. In order to achieve these goals, not only a short computation time is necessary, but also the model accuracy is very important. For this reason, this paper investigates the simulation results of a developed real-time model and compares them with results from physical tests and a multibody simulation model. The influence of the modeling level on the simulation results is discussed in the context of the investigations carried out. For quasistatic analysis the Kinematic & Compliance (K&C) test rig and for dynamic tests a dynamic suspension test rig is used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Bell, S., Ellis, J., Garrott, W. & Liao, Y., 1987. Suspension testing using the suspension parameter measurement device. SAE 870577, https://doi.org/10.4271/870577.

  • Brems, W., Van Doornik, J., De Vries, E. & Wiedemann, J., 2015. Frequency response and latency analysis of a driving simulator for chassis development and vehicle dynamics evaluation, S. 109-116: DSC Europe - Driving Simulation Conference Exhibition.

    Google Scholar 

  • Caputo, A., Spina, M. & Guglielmino, E., 2003. Sensitivity of Suspension System Performance to Bushing Stiffness Variation - An Evaluation Methology. s.l.:SAE Technical Paper 2003-01-0237, https://doi.org/10.4271/2003-01-0237.

  • Drogies, I. S., 2006. Objektorientierte Modellbildung des fahrdynamischen Verhaltens mit MODELICA in Fahrdynamik-Regelung. s.l.:Springer, pp. 71-91.

    Google Scholar 

  • Haberzettl, S., Zschocke, A. & Gauterin, F., 2015. A new method for studying the longitudinal dynamic behaviour of a suspension on a test rig. s.l.:Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, https://doi.org/10.1177/0954407015601265.

  • Heine, J. & Haberzettl, S., 2014. Achsentwicklung am Fahrwerk-Identifikations- Prüfstand. Baden-Baden: 17. Kongress Simulation und Erprobung im Fahrzeugbau, Berechnung, Prüfstands- und Straßenversuch, 18.-19. Nov, 2014, pp. 871-884.

    Google Scholar 

  • Holdmann, P., Köhn, P., Möller, B. & Willems, R., 1998. Suspension kinematics and compliance - measuring and simulation. s.l.:SAE Technical Paper 980897, https://doi.org/10.4271/980897.

  • Kracht, F. E., Dandekar, R., Bruckmann, T. & Schramm, D., 2017. Echtzeitfähige Objektorientierte Modellbildung am Beispiel einer Fahrzeug-Radaufhängung, “Realtime object-oriented modeling with the example of a vehicle wheel suspension”. presented at the Dritte IFToMM D-A-CH Konferenz TU Chemnitz: s.n.

    Google Scholar 

  • Kracht, F. E., Saba, M. & Schramm, D., 2018. Real-time Calculation of Reaction Forces and Elasticities in Vehicle Wheel Suspensions. Beijing, China: presented at the 14th Interna-tional Symposium on Advanced Vehicle Control (AVEC’18), 16-20 Juli 2018.

    Google Scholar 

  • Kracht, F. & Schramm, D., 2019. Real-Time Capable Calculation of Reaction Forces of Multibody Systems Using Optimized Bushings on the Example of a Vehicle Wheel Suspension (in press). Duisburg: ECCOMAS Multibody Dynamics Conference.

    Google Scholar 

  • Pacejka, H., 2009. Tyre and Vehicle Dynamics. Oxford: Butterworth-Heinemann Elsevier Ltd. ISBN: 978-0-7506-6918-4.

    Google Scholar 

  • Scheiblegger, C., Pfeffer, P., Karrer, H. & Geiger, N., 2011. Modellierung von Elastomerlagern und Hydrolagern zur Simulation von Fahrkomfort und Fahrdynamik. S. 247-267: VDI: Reifen-Fahrwerk-Fahrbahn.

    Google Scholar 

  • Schramm, D., Hiller, M. & Bardini, R., 2018. Vehicle Dynamics: Modeling and Simulation. Berlin: Springer-Verlag GmbH Deutschland ISBN: 978-3-662-54482-2.

    Google Scholar 

  • Schütz, H., 2014. Validierung eines mehraxialen Fahrwerkprüfstands. Karlsruhe: Diplomarbeit.

    Google Scholar 

  • Will, V., 2018. Entwicklung einer fachbereichsübergreifenden Standardauswerteroutine für dynamische Prüfstandsuntersuchungen von Fahrwerken. Stuttgart: Masterarbeit.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Lefèvre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lefèvre, S., Kracht, F.E., Schramm, D. (2020). Quasi-static and dynamic suspension measurements vs. multi-body and real‑time simulation results. In: Pfeffer, P. (eds) 10th International Munich Chassis Symposium 2019. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26435-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-26435-2_13

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-26434-5

  • Online ISBN: 978-3-658-26435-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics