Skip to main content

Identifizierung von Strukturen in Gebäuden

  • Chapter
  • First Online:
Alternative Routen in komplexen Umgebungen
  • 856 Accesses

Zusammenfassung

In diesem Kapitel wird ein stärkerer Fokus auf die zu untersuchende Karte gelegt, also beispielsweise einen Gebäudeplan. Es werden Ansätze vorgestellt, bei denen der räumliche Eindruck für die Analyse von Routen und Karten mit einbezogen werden kann. Es findet somit entweder direkt oder indirekt eine Identifizierung von Strukturen in Gebäuden statt. Dazu wird das Konzept der diskreten Isovisten eingeführt, um eine Annäherung der lokalen Umgebung einer Route zu erhalten. Als Anwendung dieser Informationen sollen gegebene Routen durch ein Gebäude annotiert werden, beispielsweise an Stellen, an denen eine Tür passiert wird. Anschließend werden die Konzepte der zwei vorigen Kapitel mit der grundsätzlichen Idee dieses Kapitels kombiniert: Es werden archetypische alternative Routen unter der Verwendung von Isovisten-Messgrößen berechnet. Demnach entstehen alternative Routen, die sich nicht mehr auf ihre eigene Geometrie beziehen, sondern ausschließlich auf die durchlaufene lokale Umgebung. Schließlich werden Isovisten-Messgrößen mittels der archetypischen Analyse untersucht, jedoch nicht basierend auf Routen, sondern auf dem Gebäudeplan selbst. Es werden sogenannte archetypische Regionen ermittelt, welche zur Annotation von Umgebungsplänen verwendet werden können und eine Interpretation derselben ermöglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Batty, M. (2001). Exploring isovist fields: Space and shape in architectural and urban morphology. Environment and planning B: Planning and Design, 28(1), 123–150.

    Article  Google Scholar 

  2. Beckmann, N., Kriegel, H.-P., Schneider, R., & Seeger B. (1990). The r*-tree: An efficient and robust access method for points and rectangles. ACM SIGMOD Record, 19, 322–331 (ACM).

    Google Scholar 

  3. Benedikt, M. L. (1979). To take hold of space: Isovists and isovist fields. Environment and Planning B: Planning and design, 6(1), 47–65.

    Article  Google Scholar 

  4. Berens, P. (2009). Circstat: A matlab toolbox for circular statistics. Journal of Statistical Software, 31(10), 1–21.

    Article  Google Scholar 

  5. Best, G. (1970). Direction-finding in large buildings. Architectural psychology (S. 72–75). London: RIBA Publications.

    Google Scholar 

  6. Bresenham, J. E. (1965). Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1), 25–30.

    Article  Google Scholar 

  7. Conroy-Dalton, R. (2001). Spatial navigation in immersive virtual environments. PhD thesis, University of London.

    Google Scholar 

  8. Dancey, C. P., & Reidy, J. (2007). Statistics without maths for psychology. New York: Pearson Education.

    Google Scholar 

  9. Davies, C., Mora, R., & Peebles, D. (2006). Isovists for orientation: Can space syntax help us predict directional confusion. In Proceedings of the space syntax and spatial cognition workshop, spatial cognition.

    Google Scholar 

  10. Davis, L. S., & Benedikt, M. L. (1979). Computational models of space: Isovists and isovist fields. Computer Graphics and Image Processing, 11(1), 49–72.

    Google Scholar 

  11. Smith, M. J. De, Goodchild, M. F., & Longley, P. (2007). Geospatial analysis: A comprehensive guide to principles, techniques and software tools. London: Troubador Publishing Ltd.

    Google Scholar 

  12. Dogu, U., & Erkip, F. (2000). Spatial factors affecting wayfinding and orientation: A case study in a shopping mall. Environment and Behavior, 32(6), 731–755.

    Article  Google Scholar 

  13. Emo, B. (2015). Exploring isovists: The egocentric perspective. In International Space Syntax Symposium, (S. 1–8).

    Google Scholar 

  14. Emo, B., Hoelscher, C., Wiener, J., & Dalton, R. (2012). Wayfinding and spatial configuration: Evidence from street corners. International space syntax symposium, (S. 1–16).

    Google Scholar 

  15. Feld, S., Werner, M., & Linnhoff-Popien, C. (2016). Approximated environment features with application to trajectory annotation. In Proceedings of the 6th IEEE Symposium Series on Computational Intelligence (IEEE SSCI 2016), (S. 1–7). IEEE.

    Google Scholar 

  16. Franz, G., & Wiener, J. M. (2008). From space syntax to space semantics: A behaviorally and perceptually oriented methodology for the efficient description of the geometry and topology of environments. Environment and Planning B: Planning and Design, 35(4), 574–592.

    Google Scholar 

  17. Gibson, J. J. (1966). The senses considered as perceptual systems.

    Google Scholar 

  18. Gärling, T. (1969). Studies in visual perception of architectural spaces and rooms: I. judgment scales of open and closed space. Scandinavian Journal of Psychology, 10(1), 250–256.

    Article  Google Scholar 

  19. Gärling, T. (1969). Studies in visual perception of architectural spaces and rooms: Ii. judgments of open and closed space by category rating and magnitude estimation. Scandinavian Journal of Psychology, 10(1), 257–268.

    Article  Google Scholar 

  20. Gärling, T. (1970). Studies in visual perception of architectural spaces and rooms: Iii. a relation between judged depth and size of space. Scandinavian Journal of Psychology, 11(1), 124–131.

    Article  Google Scholar 

  21. Gärling, T. (1970). Studies in visual perception of architectural spaces and rooms: Iv. the relation of judged depth to jugded size of space under different viewing conditions. Scandinavian Journal of Psychology, 11(1), 133–145.

    Article  Google Scholar 

  22. Haq, Saif, & Zimring, Craig. (2003). Just down the road a piece: The development of topological knowledge of building layouts. Environment and Behavior, 35(1), 132–160.

    Google Scholar 

  23. Hayward, S. C., & Franklin, S. S. (1974). Perceived openness-enclosure of architectural space. Environment and Behavior, 6(1), 37–52.

    Google Scholar 

  24. Hillier, B., & Hanson, J. (1984). The social logic of space. Cambridge: Cambridge University Press.

    Google Scholar 

  25. Hölscher, C., Meilinger, T., Vrachliotis, G., Brösamle, M., & Knauff, M. (2005). Finding the way inside: Linking architectural design analysis and cognitive processes. Spatial Cognition IV. Reasoning, Action, Interaction, (S. 1–23). Berlin: Springer.

    Google Scholar 

  26. Jammalamadaka, S. R., & Sengupta, A. (2001). Topics in Circular Statistics, Bd. 5. Singapore: World Scientific.

    Google Scholar 

  27. Jütte, R. (2000). Geschichte der Sinne: von der Antike bis zum Cyberspace. München: Beck.

    Google Scholar 

  28. Krisp, J. M., Ding, L., Jin, Y., & Peer, P. (2012). Indoor routing: Is a centrality measure for an indoor routing network useful? Mobile Tartu, 2012, 22–25.

    Google Scholar 

  29. Krisp, J. M., Liu, L., & Berger T. (2010). Goal directed visibility polygon routing for pedestrian navigation. International Symposium on LBS & TeleCartography.

    Google Scholar 

  30. Krisp, J. M., Peer, P., & Ding, L. (2012). Classification of an indoor routing network based on graph theory. GeoInformatics, 2012.

    Google Scholar 

  31. Montero, R. S., & Bribiesca, E. (2009). State of the art of compactness and circularity measures. International Mathematical Forum, 4, 1305–1335.

    Google Scholar 

  32. Nijhuis, S. (2014). Gis-based landscape design research: Exploring aspects of visibility in landscape architectonic compositions. Geodesign by Integrating Design and Geospatial Sciences, (S. 193–217). Cham: Springer.

    Google Scholar 

  33. Osserman, R. (1978). The isoperimetric inequality. Bulletin of the American Mathematical Society, 84(6), 1182–1238.

    Article  MathSciNet  Google Scholar 

  34. Peponis, J., Wineman, J., Rashid, M., Hong Kim, S., & Bafna, S. (1997). On the description of shape and spatial configuration inside buildings: Convex partitions and their local properties. Environment and Planning B: Planning and Design, 24(5), 761–781.

    Google Scholar 

  35. Raubal, M. (2002). Wayfinding in built environments: The case of airports. IfGIprints, 14.

    Google Scholar 

  36. Robson, S. K. A. (2002). A review of psychological and cultural effects on seating behavior and their application to foodservice settings. Journal of Foodservice Business Research, 5(2), 89–107.

    Article  Google Scholar 

  37. Schneider, S., & Koenig, R. (2012). Exploring the generative potential of isovist fields – The evolutionary generation of urban layouts based on isovist field properties. In 30th International Conference on Education and Research in Computer Aided Architectural Design in Europe, 355–363.

    Google Scholar 

  38. Snowden, R., Snowden, R. J., Thompson, P., & Troscianko, T. (2012). Basic Vision: an Introduction to Visual Perception. Oxford: Oxford University Press.

    Google Scholar 

  39. CRV Tandy. (1967). The isovist method of landscape survey. Methods of Landscape Analysis, (S. 9–10).

    Google Scholar 

  40. Turner, A., Doxa, M., O’sullivan, D., & Penn, A. (2001). From isovists to visibility graphs: A methodology for the analysis of architectural space. Environment and Planning B: Planning and Design, 28(1), 103–121.

    Google Scholar 

  41. Wiener, J. M., & Franz, G. (2004). Isovists as a means to predict spatial experience and behavior. Spatial Cognition IV: Reasoning, Action and Interaction, (S. 42–57). Berlin: Springer.

    Google Scholar 

  42. Wiener, J. M., Hölscher, C., Büchner, S., & Konieczny, L. (2012). Gaze behaviour during space perception and spatial decision making. Psychological research, 76(6), 713–729.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Feld .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feld, S. (2019). Identifizierung von Strukturen in Gebäuden. In: Alternative Routen in komplexen Umgebungen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-26270-9_5

Download citation

Publish with us

Policies and ethics