Advertisement

Supply Chain Analytics – Entscheidungsunterstützung für das Management von Supply Chains

  • Wolfgang StölzleEmail author
  • Raphael Preindl
Chapter

Zusammenfassung

Die Digitalisierung ist eines der dominierenden Themen dieses Jahrzehnts. Nahezu alle Lebensbereiche werden durch digital basierte Innovationen beeinflusst und verändern dadurch unsere Gesellschaft und unsere Wirtschaft. Davon betroffen sind auch Wertschöpfungsnetzwerke, die durch eine kooperativ angelegte, unternehmensübergreifende Koordination Mehrwert für Konsumenten generieren können. Demnach stellt sich die Frage, wie Digitalisierung das Management solcher Supply Chains (SCs) zu verändern vermag.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Acito, F. und Khatri, V. (2014) ‘Business analytics: Why now and what next?’ Business Horizons, 57(5), 565–570.  https://doi.org/10.1016/j.bushor.2014.06.001
  2. Arunachalam, D., Kumar, N. und Kawalek, J.P. (2018) ‘Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice’, Transportation Research Part E: Logistics and Transportation Review, 114, 416–436.  https://doi.org/10.1016/j.tre.2017.04.001
  3. Arya, V. et al. (2017) ‘An exploratory study on supply chain analytics applied to spare parts supply chain’, Benchmarking: An International Journal, 24(6), 1571–1580.  https://doi.org/10.1108/bij-04-2016-0053
  4. Bode, C. und Wagner, S.M. (2015) ‘Structural drivers of upstream supply chain complexity and the frequency of supply chain disruptions’, Journal of Operations Management, 36(1), 215–228.  https://doi.org/10.1016/j.jom.2014.12.004
  5. Bowers, M.R., Petrie, A.G. und Holcomb, M.C. (2017) ‘Unleashing the Potential of Supply Chain Analytics’, MIT Sloan Management Review, 59(1), 14–16.Google Scholar
  6. Chae, B., Olson, D. und Sheu, C. (2014) ‘The impact of supply chain analytics on operational performance: a resource-based view’, International Journal of Production Research, 52(16), 4695–4710.  https://doi.org/10.1080/00207543.2013.861616
  7. Davenport, T.H. und Harris, J.G. (2007) Competing on analytics. Boston, Mass.: Harvard Business School Pr.Google Scholar
  8. Davenport, T.H., Harris, J.G. und Morison, R. (2010) Analytics at work: Smarter decisions, better results. Boston: Harvard Business.Google Scholar
  9. French, S., Maule, J. und Papamichail, N. (2009) Decision Behaviour, Analysis and Support. Cambridge: Cambridge University Press.Google Scholar
  10. Gleich, R. et al. (eds.) (2017) Strategische Unternehmensführung mit Advanced Analytics: Neue Möglichkeiten von Big Data für Planung und Analyse erkennen und nutzen. Freiburg: Haufe Gruppe.Google Scholar
  11. Gunasekaran, A. and Sandhu, M. (eds.) (2010) Handbook on business information systems. Singapore: World Scientific Pub. Co.Google Scholar
  12. Hahn, G.J. und Packowski, J. (2015) ‘A perspective on applications of in-memory analytics in supply chain management’, Decision Support Systems, 76, 45–52.  https://doi.org/10.1016/j.dss.2015.01.003
  13. Hawley, D. (2016) ‘Implementing Business Analytics within the Supply Chain: Success and Fault Factors’, Electronic Journal of Information Systems Evaluation, 19(2), 112–220.Google Scholar
  14. Herden, T. und Bunzel, S. (2018) ‘Archetypes of Supply Chain Analytics Initiatives—An Exploratory Study’, Logistics, 2(2), 10.  https://doi.org/10.3390/logistics2020010
  15. Ittmann, H.W. (2015) ‘The impact of big data and business analytics on supply chain management’, Journal of Transport and Supply Chain Management, 9(1), 76.  https://doi.org/10.4102/jtscm.v9i1.165
  16. Kersten, W., Grussenmeyer, R. und Lammers, T. (2012) ‘Current Approaches in Complexity Management - Practical and Theoretical Implications for Distribution Networks’, Research in Logistics & Production, 55–68.Google Scholar
  17. Kersten, W., Schröder, M. und Indorf, M. (2017) ‘Potenziale der Digitalisierung für das Supply Chain Risikomanagement: Eine empirische Analyse’, in Seiter, M., Grünert, L. and Berlin, S. (eds.) Betriebswirtschaftliche Aspekte von Industrie 4.0. (ZfbF-Sonderheft, Sonderheft 71/17). Wiesbaden, Germany: Springer Gabler, 47–74.Google Scholar
  18. Manuj, I. und Sahin, F. (2011) ‘A model of supply chain and supply chain decision‐making complexity’, International Journal of Physical Distribution & Logistics Management, 41(5), 511–549.  https://doi.org/10.1108/09600031111138844
  19. Moktadir, M.A. et al. (2018) ‘Barriers to big data analytics in manufacturing supply chains: A case study from Bangladesh’, Computers & Industrial Engineering.  https://doi.org/10.1016/j.cie.2018.04.013
  20. Ocalir-Akunal, E.V. (2016) ‘Decision Support Systems in Transport Planning’, Procedia Engineering, 161, 1119–1126.  https://doi.org/10.1016/j.proeng.2016.08.518
  21. O’Dwyer, J. und Renner, R. (2011) ‘The promise of advanced supply chain analytics’, Supply Chain Management Review, 15(1), 32–37.Google Scholar
  22. Power, D.J. (2013) Decision Support, Analytics, and Business Intelligence, Second Edition. New York: Business Expert Press.Google Scholar
  23. Sauter, V.L. (2010) Decision support systems for business intelligence. 2nd edn. Hoboken, N.J: Wiley.Google Scholar
  24. Souza, G.C. (2014) ‘Supply chain analytics’, Business Horizons, 57(5), 595–605.  https://doi.org/10.1016/j.bushor.2014.06.004
  25. Tiwari, S., Wee, H.M. und Daryanto, Y. (2018) ‘Big data analytics in supply chain management between 2010 and 2016: Insights to industries’, Computers & Industrial Engineering, 115, 319–330.  https://doi.org/10.1016/j.cie.2017.11.017
  26. Trkman, P. et al. (2010) ‘The impact of business analytics on supply chain performance’, Decision Support Systems, 49(3), 318–327.  https://doi.org/10.1016/j.dss.2010.03.007
  27. Wang, G. et al. (2016) ‘Big data analytics in logistics and supply chain management: Certain investigations for research and applications’, International Journal of Production Economics, 176, 98–110.  https://doi.org/10.1016/j.ijpe.2016.03.014
  28. Zhu, S. et al. (2018) ‘How supply chain analytics enables operational supply chain transparency’, International Journal of Physical Distribution & Logistics Management, 48(1), 47–68.  https://doi.org/10.1108/ijpdlm-11-2017-0341

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Supply Chain ManagementUniversität St.GallenSt.GallenSchweiz

Personalised recommendations