Advertisement

Einfluss digitaler (Startup-)Technologien im Operations Management

  • Joschka SchwarzEmail author
  • Christoph Ihl
Chapter

Zusammenfassung

In den letzten Jahren haben Unternehmen in fast allen Branchen eine Reihe von Initiativen zur Identifizierung neuer digitaler Technologien und zur Nutzung ihrer Vorteile durchgeführt (Technology Foresight). Sowohl die Weiterentwicklung bestehender als auch die Implementierung neuer Technologien führt zu einer digitalen Transformation der gesamten Wertschöpfungskette, die nahezu alle Produkte und Prozesse sowie Organisationsstrukturen und Managementkonzepte betrifft (Kersten et al., 2017). Die möglichen Vorteile der Digitalisierung sind vielfältig und umfassen unter anderem Umsatz- oder Produktivitätssteigerungen, Innovationen in der Wertschöpfung sowie neuartige Formen der Interaktion mit Kunden. Durch die Anwendung von Technologien wie beispielsweise künstlicher Intelligenz, maschinellem Lernen oder der Blockchain-Technologie können ganze Geschäftsmodelle transformiert oder ersetzt werden (Downes und Nunes, 2015).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Auramo, J., Aminoff, A. und Punakivi, M., 2002. Research agenda for e-business logistics based on professional opinions. International Journal of Physical Distribution & Logistics Management, 32(7), 513–531.Google Scholar
  2. Bjork, S., Offer, A. und Söderberg, G., 2014. Time series citation data: The Nobel Prize in economics. Scientometrics, 98(1), 185–196.Google Scholar
  3. Bourlakis, M. und Bourlakis, C., 2006. Integrating logistics and information technology strategies for sustainable competitive advantage. Journal of Enterprise Information Management, 19(4), 389–402.Google Scholar
  4. Boyack, K.W. und Klavans, R., 2010. Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately?. Journal of the American Society for Information Science and Technology, 61(12), 2389–2404.Google Scholar
  5. Briner, R.B. und Denyer, D., 2012. Systematic Review and Evidence Synthesis as a Practice and Scholarship Tool, Handbook of evidence-based management: Companies, classrooms and research, 112–129.Google Scholar
  6. Callon, M., Courtial, J.-P., Turner, W.A. und Bauin, S., 1983. From translations to problematicnetworks: An introduction to co-word analysis. Social Science Information, 22(2), 191– 235.Google Scholar
  7. Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. und Herrera, F., 2011. Science mapping software tools: Review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62(7), 1382–1402.Google Scholar
  8. Downes, L. und Nunes, P., 2015. Big-Bang Disruption. Harvard Business Review, 91(3), 44–56.Google Scholar
  9. Egghe, L. und Rousseau, R., 1990. Introduction to Informetrics: quantitative methods in library, documentation and information science, Elsevier Science Publishers.Google Scholar
  10. Fera, M., Fruggiero, F., Lambiase, A., Macchiaroli, R. und Miranda, S., 2017. The role of uncertainty in supply chains under dynamic modeling. International Journal of Industrial Engineering Computations, 8(1), 119–140.Google Scholar
  11. Freeman, L.C., 1977. A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35.Google Scholar
  12. Fruchterman, M.J. und Reingold, E.M., 1991. Graph Drawing by Force-directed Placement. Software: Practice and experience, 21(11), 1129–1164.Google Scholar
  13. Gunasekaran, A., Papadopoulos, T., Dubey, R., Wamba, S.F., Childe, S.J., Hazen, B. und Akter, S., 2017. Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70, 308–317.Google Scholar
  14. Harris, I., Wang, Y. und Wang, H., 2015. ICT in multimodal transport and technological trends: Unleashing potential for the future. International Journal of Production Economics, 159, 88–103.Google Scholar
  15. Hazen, B.T., Boone, C.A., Ezell, J.D. und Jones-Farmer, L.A., 2014. Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications. International Journal of Production Economics, 154, 72–80.Google Scholar
  16. Hofmann, E. und Osterwalder, F., 2017. Third-Party Logistics Providers in the Digital Age: Towards a New Competitive Arena?. Logistics, 1(2), 9.Google Scholar
  17. Kache, F. und Seuring, S., 2017. Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36.Google Scholar
  18. Kersten, W., Schröder, M. und Indorf, M., 2017. Potenziale der Digitalisierung für das Supply Chain Risikomanagement: Eine empirische Analyse, in: Seiter, M., Grünert, L. und Berlin, S. (Hrsg.), Betriebswirtschaftliche Aspekte von Industrie 4.0, Springer Gabler, Wiesbaden, 47–74.Google Scholar
  19. Kessler, M.M., 1963. Bibliographic coupling between scientific papers. American documentation, 14(1), 10–25.Google Scholar
  20. King, J., 1987. A review of bibliometric and other science indicators and their role in research evaluation. Journal of Information Science, 13(5), 261–276.Google Scholar
  21. Le, Q. V. und Mikolov, T., 2014. Distributed Representations of Sentences and Documents. International Conference on Machine Learning, 1188–1196.Google Scholar
  22. Leydesdorff, L., 2008. On the normalization and visualization of author co-citation data: Salton’s Cosineversus the Jaccard index. Journal of the American Society for Information Science and Technology, 59(1), 77–85.Google Scholar
  23. Lichtenthaler, E., 2004. Technological change and the technology intelligence process: A case study. Journal of Engineering and Technology Management - JET-M, 21(4), 331–348.Google Scholar
  24. van der Maaten, L. und Hinton, G., 2008. Visualizing Data using t-SNE. Journal of Machine Learning Research, 9, 2579–2605.Google Scholar
  25. Marshakova, I., 1973. System of document connections based on references. Nauchno- Tekhnicheskaya Informatsiya Seriya 2 - Informatsionnye Protsessy i Sistemy, (6), 3–8.Google Scholar
  26. De Meo, P., Ferrara, E., Fiumara, G. und Provetti, A., 2011. Generalized Louvain method for community detection in large networks. International Conference on Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on Intelligent Systems Design and Applications, IEEE, 88–93.Google Scholar
  27. Merigó, J.M. und Yang, J.B., 2017. Accounting Research: A Bibliometric Analysis. Australian Accounting Review, 27(1), 71–100.Google Scholar
  28. Mishra, D., Gunasekaran, A., Papadopoulos, T. und Childe, S.J., 2018. Big Data and supply chain management: a review and bibliometric analysis. Annals of Operations Research, 270(1– 2), 313–336.Google Scholar
  29. Müller, J.M., Buliga, O. und Voigt, K.I., 2018. Fortune favors the prepared: How SMEs approach business model innovations in Industry 4.0. Technological Forecasting and Social Change, 132, 2–17.Google Scholar
  30. Porter, A.L. und Cunningham, S.W., 2004. Tech Mining: Exploiting New Technologies for Competitive Advantage, 1. Aufl., John Wiley & Sons, Hoboken, NJ, USA.Google Scholar
  31. Pritchard, A., 1996. Statistical bibliography or bibliometrics. Journal of documentation, 25(4), 348–349.Google Scholar
  32. Reaidy, P.J., Gunasekaran, A. und Spalanzani, A., 2015. Bottom-up approach based on Internet of Things for order fulfillment in a collaborative warehousing environment. International Journal of Production Economics, 159, 29–40.Google Scholar
  33. Rip, A. und Courtial, J.P., 1984. Co-word maps of biotechnology: An example of cognitive scientometrics. Scientometrics, 6(6), 381–400.Google Scholar
  34. Sandison, A., 1989. Documentation Note: Thinking about citation analysis. Journal of Documentation, 45(1), 59–64.Google Scholar
  35. Scott, J., 2000. Social Network Analysis: A Handbook, 2. Aufl., Sage Publications.Google Scholar
  36. Slavin, R.E., 1986. Best-Evidence Synthesis: An Alternative to Meta-Analytic and Traditional Reviews. Educational Researcher, 15(9), 5–11.Google Scholar
  37. Small, H., 1973. Co-citation in the Scientific Literature: A New Measure of the Relationship Between Two Documents. Journal of the American Society for Information Science, 24(4), 265–269.Google Scholar
  38. Smith, L.C., 1981. Citation analysis. Library Trends, 30(1), 83–106.Google Scholar
  39. De Solla Price, D., 1965. Networks of scientific papers. Science, 149(3683), 510–515.Google Scholar
  40. Srinivasan, R., Lilien, G.L. und Rangaswamy, A., 2002. Technological Opportunism and Radical Technology Adoption: An Application to E-Business. Journal of Marketing, 66(3), 47– 60.Google Scholar
  41. Su, H.N. und Lee, P.C., 2010. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics, 85(1), 65–79.Google Scholar
  42. Wu, D., Liu, S., Zhang, L., Terpenny, J., Gao, R.X., Kurfess, T. und Guzzo, J.A., 2017. A fog computing-based framework for process monitoring and prognosis in cybermanufacturing. Journal of Manufacturing Systems, 43, 25–34.Google Scholar
  43. Xu, L. Da, Xu, E.L. und Li, L., 2018. Industry 4.0: state of the art and future trends. International Journal of Production Research, 7543, 1–22.Google Scholar
  44. Ziman, J., 1968. Public Knowledge : An Essay Concerning the Social Dimension of Science, CUP Archive.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of EntrepreneurshipTechnische Universität HamburgHamburgDeutschland

Personalised recommendations