Advertisement

Wie strategisch sind Algorithmen? Die Rolle von Big Data und Analytics im Rahmen strategischer Entscheidungsprozesse

  • Thomas WronaEmail author
  • Pauline Reinecke
Chapter

Zusammenfassung

Seit geraumer Zeit wird insbesondere von vielen Fachvertretern der Wirtschaftsinformatik und der Managementforschung die These artikuliert, die rasant steigenden Möglichkeiten im Rahmen von Big Data und Analytics (BDA) könnten – bei „richtigem“ Einsatz – die Wettbewerbsfähigkeit und auch den Erfolg von Unternehmen signifikant verbessern (vgl. z.B. Davenport, 2014; Barbosa, de la Calle Vicente, Ladeira & de Oliveira, 2018; Erevelles, Fukawa & Swayne, 2016; Gunasekaran et al., 2017). Hierfür wird eine große Bandbreite an theoretischen Ankerpunkten genutzt – z.B. die Transaktionskostentheorie (BDA kann die Transaktionseffizienz erhöhen, vgl. Waller & Fawcett, 2013), ressourcen- und kompetenzorientierte Ansätze (BDA als wertvolle Ressource/Fähigkeit, vgl. Braganza, Brooks, Nepelski, Ali & Moro, 2017) oder Informationsprozessansätze (BDA zur Reduzierung von Unsicherheiten und Mehrdeutigkeiten in Entscheidungsprozessen, vgl. Kowalczyk & Buxmann, 2014, 2015).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Ansoff, H. I., Declerk, R. & Hayes, R. (Hrsg.). (1976). From strategic planning to strategic management. New York.Google Scholar
  2. AOM (2018). New AOM Specialized Conference 2018: Big Data and Managing in a Digital Economy. April 18-20. Hosted by the university of Surrey, UK. Verfügbar unter http://bigdata.aom.org [03.12.2018].
  3. Arnott, D. & Pervan, G. (2014). A critical analysis of decision support systems research revisited: the rise of design science. Journal of Information Technology, 29, 269–293.Google Scholar
  4. Bamberger, I. & Wrona, T. (1996). Der Ressourcenansatz und seine Bedeutung für die Strategische Unternehmensführung. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung (zfbf), 2, 130–153.Google Scholar
  5. Bamberger, I. & Wrona, T. (2012). Strategische Unternehmensführung – Strategien, Systeme, Methoden, Prozesse. München: Vahlen.Google Scholar
  6. Barbosa, M. W., de la Calle Vicente, A., Ladeira, M. B. & de Oliveira, M. P. V. (2018). Managing supply chain resources with Big Data Analytics: a systematic review. International Journal of Logistics Research and Applications, 21 (3), 177–200.Google Scholar
  7. Barnaghi, P., Sheth, A. & Henson, C. (2013). From data to actionable knowledge: Big data challenges in the web of things. IEEE Intelligent Systems, 28 (6), 6–11.Google Scholar
  8. Bharadwaj, A. S. (2000). A resource-based perspective on information technology capability and firm performance: an empirical investigation. MIS Quarterly, 24 (1), 169–196.Google Scholar
  9. BITKOM (2015). Big Data und Geschäftsmodell-Innovationen in der Praxis: 40+ Beispiele. Verfügbar unter https://www.bitkom.org/sites/default/files/file/import/151229-Big-Dataund-GM-Innovationen.pdf [03.12.2018].
  10. Braganza, A., Brooks, L., Nepelski, D., Ali, M. & Moro, R. (2017). Resource management in big data initiatives: Processes and dynamic capabilities. Journal of Business Research, 70, 328–337.Google Scholar
  11. Brynjolfsson, E., Hitt, L. & Kim, H. H. (2011). Strength in Numbers: How Does Data-Driven Decisionmaking Affect Firm Performance? (April 22, 2011). Verfügbar unter https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1819486 [03.12.2018].
  12. Chen, D. Q., Preston, D. S. & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32 (4), 4–39.Google Scholar
  13. Chen, M., Mao, S. & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19 (2), 171–209.Google Scholar
  14. Chen, R. S., Yeh, K. C., Chang, C. C. & Chien, H. H. (2006). Using data mining technology to improve manufacturing quality – A case study of LCD driver IC packaging industry. In: ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing, 115–119.Google Scholar
  15. Constantiou, I. D. & Kallinikos, J. (2015). New games, new rules: Big data and the changing context of strategy. Journal of Information Technology, 30 (1), 44–57.Google Scholar
  16. Davenport, T. H. (2006). Competing on analytics. Harvard Business Review, 84 (1), 98–107.Google Scholar
  17. Davenport, T. H. (2014). Big Data at Work: Dispelling the Myths, Uncovering the Opportunities. Boston: Harvard Business Review Press.Google Scholar
  18. Davenport, T. H., Barth, P. & Bean, R. (2012). How ‘big data’ is different. MIT Sloan Management Review, 54 (1), 43–46.Google Scholar
  19. Dierickx, I. & Cool, K. (1989). Asset stock accumulation and sustainability of competitive advantage. Management science, 35 (12), 1504–1511.Google Scholar
  20. DiMaggio, P. J. & Powell, W. W. (1991). Introduction. In W.W. Powell & P. J. DiMaggio (Hrsg.), The new institutionalism in organizational analysis (S. 1–38). Chicago.Google Scholar
  21. Dursun, D. (2014). Real-Word Data Mining. New Jersey: Pearson Education Inc.Google Scholar
  22. Eisenhardt, K. M. & Martin, J. A. (2000). Dynamic capabilities: What are they? Strategic Management Journal, 21 (10–11), 1105–1121.Google Scholar
  23. Erevelles, S., Fukawa, N. & Swayne, L. (2016). Big Data consumer analytics and the transformation of marketing. Journal of Business Research, 69 (2), 897–904.Google Scholar
  24. EURAM (2018). SIG 13: Strategic Management (SM): ST 13_06 Strategic Ambidexterity: The paradox of exploitation and exploration. Verfügbar unter http://www.euramonline.org/programme2019/strategic-interest-groups/sig-13-strategic-management-sm.html [03.12.2018].
  25. Fiol, M. (2001). Revisiting an identity-based view of sustainable competitive advantage. Journal of Management, 6, 691–699.Google Scholar
  26. Fiorini, P., Seles, B. M., Jabbour, C. J., Mariano, E. B. & Jabbour, A. B. (2018). Management theory and big data literature: From a review to a research agenda. International Journal of Information Management, 43, 112–129.Google Scholar
  27. Fosso Wamba, S., Akter, S., Edwards, A., Chopin, G. & Gnanzou, D. (2015). How ‘big data’ can make big impact: findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165 (C), 234–246.Google Scholar
  28. Fraunhofer (2012). Big Data – Vorsprung durch Wissen. Innovationspotenzialanalyse. Verfügbar unter https://www.iais.fraunhofer.de/content/dam/iais/gf/bda/Downloads/Innovationspotenzialanalyse_Big-Data_FraunhoferIAIS_2012.pdf [03.12.2018].
  29. George, G., Haas, M. & Pentland, A. (2014). Big Data und Management. Academy of Management Journal, 57 (2), 321–326.Google Scholar
  30. Grover, V., Chiang, R., Liang, T.-P. & Zhang, D. (2018). Creating strategic business value from Big Data Analytics: a research framework. Journal of Management Information Systems, 35 (2), 388–423.Google Scholar
  31. Gunasekaran, A., Papadopoulos, T., Dubey, R., Fosso Wamba, S., Childe, S. J., Hazen, B. & Akter, S. (2017). Big data and predictive analytics for supply chain and organizational performance. Journal of Business Research, 70 (1), 308–317.Google Scholar
  32. Günther, W. A., Mehrizi, M. H. R., Huysman, M. & Feldberg, F. (2017). Debating big data: A literature review on realizing value from big data. Journal of Strategic Information Systems, 26 (3), 191–209.Google Scholar
  33. Han, J., Kamber, M. & Pei, J. (2011). Data Mining: Concepts and techniques (3rd ed.). Elsevier.Google Scholar
  34. Hart, S. L. (1992). An integrative framework for strategy-making processes. Academy of Management Review, 17 (2), 327–351.Google Scholar
  35. Hartmann, P. M., Zaki, M., Feldmann, N. & Neely, A. (2014). Big Data for Big Business? A Taxonomy of Data-driven Business Models used by Start-up Firms. Working Paper, March 2014, University of Cambridge, Cambridge Service Alliance.Google Scholar
  36. Helfat, C. E. (1997). Know-how and asset complementarity and dynamic capability accumulation: the case of R&D. Strategic Management Journal, 18, 339–360.Google Scholar
  37. Hill, R. K. (2015). What an algorithm is. Philosophy & Technology 29(1): 35–59.Google Scholar
  38. Holsapple, C., Lee-Post, A. & Pakath, R. (2014). A unified foundation for business analytics. Decision Support Systems, 64, 130–141.Google Scholar
  39. Huff, A. S. & Reger, R. K. (1987). A review of strategic process research. Journal of Management, 13 (2), 211–236.Google Scholar
  40. Kersten, W., von See, B. & Indorf, M. (2018). Digitalisierung als Wegbereiter für effizientere Wertschöpfungsnetzwerke. In A. Khare, D. Kessler & J. Wirsam (Hrsg.), Marktorientiertes Produkt- und Produktionsmanagement in digitalen Umwelten. Wiesbaden: Springer Gabler.Google Scholar
  41. Kersten, W. (2018). Geschäftsmodelle in der Industrie 4.0, in H. Corsten, R. Gössinger & T. S. Spengler (Hrsg.), Handbuch Produktions- und Logistikmanagement in Wertschöpfungsnetzwerken (S. 1286–1303). De Gruyter Handbook. Berlin: De Gruyter Oldenbourg.Google Scholar
  42. Kersten, W., Schröder, M. & Indorf, M. (2017). Potenziale der Digitalisierung für das Supply Chain Risikomanagement: Eine empirische Analyse. In M. Seiter, L. Grünert & S. Berlin (Hrsg.), Betriebswirtschaftliche Aspekte von Industrie 4.0 (S. 47–74). Wiesbaden: Springer Gabler.Google Scholar
  43. Kersten, W., Seiter, M., von See, B., Hackius, N. & Maurer, T. (2017). Trends und Strategien in Logistik und Supply Chain Management - Chancen der digitalen Transformation. Studie der Bundesvereinigung Logistik. Bremen.Google Scholar
  44. Kieser, A. (1996). Moden & Mythen des Organisierens. Die Betriebswirtschaft: DBW 56 (1), 21–39.Google Scholar
  45. Kirsch, W. (1996). Wegweiser zur Konstruktion einer evolutionären Theorie der strategischen Führung. Kapitel eines Theorieprojektes. München: Verlag B. Kirsch.Google Scholar
  46. Koch, J., Krämer, H., Rechkwitz, A. & Wenzel, M. (2016). Zum Umgang mit Zukunft in Organisationen – eine praxistheoretische Perspektive. Managementforschung, 26, 161–184.Google Scholar
  47. Kowalczyk, M. & Buxmann, P. (2014). Big data and information processing in organisational decision processes. Business & Information Systems Engineering, 6, 267–278.Google Scholar
  48. Kowalczyk, M. & Buxmann, P. (2015). An ambidextrous perspective on business intelligence and analytics support in decision processes: Insights from a multiple case study. Decision Support Systems, 80, 1–30.Google Scholar
  49. Leonard‐Barton, D. (1992). Core capabilities and core rigidities: A paradox in managing new product development. Strategic Management Journal, 13 (1), 111–125.Google Scholar
  50. Loebbecke, C. & Picot, A. (2015). Reflections on societal and business model transformation arising from digitization and big data analytics: a research agenda. Journal of Strategic Information Systems, 24 (3), 149–157.Google Scholar
  51. March, J. G. (1995). The future, disposable organizations and the rigidities of imagination. Organization, 2 (3–4), 427–440.Google Scholar
  52. Markides, C. C. (2013). Game-changing strategies: How to create new market space in established industries by breaking the rules. Chichester: John Wiley & Sons.Google Scholar
  53. Mazoué, J. G. (1990). Diagnosis without doctors. Journal of Medicine and Philosophy 15(6), 559–579.Google Scholar
  54. Mazzei, M. J. & Noble, D. (2017). Big data dreams: A framework for corporate strategy. Business Horizons, 60 (3), 405–414.Google Scholar
  55. McAfee, A. & Brynjolfsson, E. (2012). Big data: The management revolution. Harvard Business Review, 90 (10), 60–68.Google Scholar
  56. Menn, A. (2018). Arzt trifft Algorithmus. WirtschaftsWoche, Nr. 46/2018, 86–89.Google Scholar
  57. Mintzberg, H. (1978). Patterns in strategy formation. Management Science, 24 (9), 934–948.Google Scholar
  58. Mithas, S., Ramasubbu, N. & Sambamurthy, V. (2011). How Information Management Capability Influences Firm Performance. MIS Quarterly, 35 (1), 237–256.Google Scholar
  59. Mittelstadt, B. D., Allo, P., Taddeo, M., Wachter, S., & Floridi, L. (2016). The ethics of algorithms: Mapping the debate. Big Data & Society, 3 (2), 1–21.Google Scholar
  60. Noss, C. (2013). Strategisches Management und Zeit: Auf dem Weg zu einem integrativen Konzept zeitinduzierter Wettbewerbsvorteile. Managementforschung, 23, 83–126.Google Scholar
  61. Papadakis, V. & Barwise, P. (Hrsg.). (1998). Strategic decisions. Context, process and outcomes London et al.Google Scholar
  62. Petersen, M., Hackius, N. & Kersten, W. (2016). Blockchains für Produktion und Logistik. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, 111 (10), 626–629.Google Scholar
  63. Porter, M. E. (1985). Competitive Advantage. Creating and sustaining superior performance. New York: Free Press.Google Scholar
  64. Porter, M. E. (1996). What is strategy? Harvard Business Review, 74 (6), 6–78.Google Scholar
  65. Porter, M. E. (1999). Wettbewerbsvorteile (5., durchgesehene und erweiterte Auflage). Frankfurt a.M., New York.Google Scholar
  66. Porter, M. E. (2001). Strategy and the Internet. Harvard Business Review, 79 (3), 62–78.Google Scholar
  67. Porter, M. E. & Heppelmann, J. E. (2014). How Smart, Connected Products Are Transforming Competition. Harvard Business Review, 92 (11), 64–88.Google Scholar
  68. Porter, M. E. & Millar, V. P. (1985). How Information Gives You Competitive Advantage. Harvard Business Review, 63 (4), 149–160.Google Scholar
  69. Rajagopalan, N., Rasheed, A. M. A. & Datta, D. K. (1993). Strategic decision processes. Critical review and future directions. Journal of Management, 19 (2), 349–384.Google Scholar
  70. Reed, R. & DeFillippi, R. J. (1990). Causal ambiguity, barriers to imitation, and sustainable competitive advantage. Academy of Management Review, 15 (1), 88–102.Google Scholar
  71. Rothmann, W. & Koch, J. (2014). Creativity in strategic lock-ins: the newspaper industry and the digital revolution. Technological Forecasting and Social Change, 83 (3), 66–83.Google Scholar
  72. Rumelt, R. P. (1974). Strategy, structure and economic performance. Boston/Mass.Google Scholar
  73. Rumelt, R. P., Schendel, D. & Teece, D. J. (1991). Strategic management and economics. Strategic Management Journal, 12, Special Issue (Winter), 5–29.Google Scholar
  74. Sambamurthy, V., Bharadwaj, A. & Grover, V. (2003). Shaping agility through digital options: Reconceptualizing the role of information technology in contemporary firms. MIS Quarterly, 27 (2), 237–263.Google Scholar
  75. Schildt, H. (2017). Big data and organizational design – the brave new world of algorithmic management and computer augmented transparency. Innovation, 19 (1), 23–30.Google Scholar
  76. Schreyögg, G., Sydow, J. & Koch, J. (2003). Organisatorische Pfade – Von der Pfadabhängigkeit zur Pfadkreation. Managementforschung, 13, 257–294.Google Scholar
  77. Schreyögg, G. & Sydow, J. (2011). Organizational Path Dependence: A Process View. Organization Studies, 32 (3), 321–335.Google Scholar
  78. Schumpeter, J. A. (1942). Capitalism, socialism and democracy. New York: Harper.Google Scholar
  79. Schwenk, C. R. (1995). Strategic decision-making. Journal of Management, 21 (3), 471–493.Google Scholar
  80. Sena, V., Demirbag, M., Bhaumik, S. & Sengupta, A. (2017). Big Data and Performance. British Journal of Management, 28 (3), 551–553.Google Scholar
  81. Shanks, G. & Sharma, R. (2011). Creating value from business analytics systems: the impact of strategy. 15th Pacific Asia Conference on Information Systems: Quality Research in Pacific, PACIS 2011 (S. 1–12). Queensland: Queensland University of Technology.Google Scholar
  82. Sharma, R., Mithas, S. & Kankanhalli, A. (2014). Transforming decision-making processes: a research agenda for understanding the impact of business analytics on organisations. European Journal of Information Systems, 23 (4), 433–441.Google Scholar
  83. Sheng, J., Amankwah-Amoah, J. & Wang, X. (2017). A multidisciplinary perspective of big data in management research. International Journal of Production Economics, 191 (1), 97– 112.Google Scholar
  84. Shollo, A. & Galliers, R. D. (2016). Towards an understanding of the role of business intelligence systems in organizational knowing. Information Systems Journal, 26 (4), 339–367.Google Scholar
  85. Sydow, J., Schreyögg, G. & Koch, J. (2009). Organizational path dependence: Opening the black box. Academy of management review, 34 (4), 689–709.Google Scholar
  86. Teece, D. J., Pisano, G. & Shuen, A. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18, 509–533.Google Scholar
  87. Vidgen, R., Shaw, S. & Grant, D. B. (2017). Management challenges in creating value from business analytics. European Journal of Operational Research, 261 (2), 626–639.Google Scholar
  88. Von Oetinger, B. (2012). Strategie und Metaphorik. In I. Bamberger & T. Wrona (Hrsg.), Strategische Unternehmensberatung (S. 231–241). Wiesbaden: Gabler.Google Scholar
  89. Waller, M. A. & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34 (2), 77–84.Google Scholar
  90. Wenzel, M., Wagner, H.-T. & Koch, J. (2017). The funeral industry and the Internet: on the historical emergence and destabilization of strategic paths. European Journal of Information Systems, 26, 361–378.Google Scholar
  91. Wixom, B. & Watson, H. (2010). The BI-based organization. International Journal of Business Intelligence Research, 1 (1), 13–28.Google Scholar
  92. Zuboff, S. (1985). Automate/informate: The two faces of intelligent technology. Organizational Dynamics, 14 (2), 5–18.Google Scholar
  93. Zuboff, S. (1988). In the age of the smart machine: The future of work and power. New York, NY: Basic Books.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Internationales & Strategisches ManagementTechnische Universität HamburgHamburgDeutschland

Personalised recommendations