Skip to main content

Selecting Scheduling Algorithms for Charging of Electric Vehicles in Photovoltaic Powered Microgrids

  • Conference paper
  • First Online:
Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen

Zusammenfassung

Elektrofahrzeuge haben eine begrenzte Reichweite, bis dann eine weitere Ladung erforderlich ist. Die Anzahl der in Südafrika verfügbaren Ladestationen ist gering, so dass die wenigen verfügbaren Stationen effektiv verwaltet werden müssen. Der Zweck dieser Arbeit ist es, Kriterien für die Auswahl geeigneter Algorithmen für die Planung der Ladung von Elektrofahrzeugen (EV) in Fotovoltaik (PV) Microgrids zu bestimmen. Zu diesem Zweck wurde eine gründliche Literaturrecherche durchgeführt und auf dieser Basis überprüft, wie die Terminplanung in anderen Bereichen angewendet wurde, insbesondere mit Fokus auf Probleme bei der Zeitplanung aufgrund von Ähnlichkeiten zwischen der Planung der Fahrpläne sowie der Planung des Ladevorgangs. Die Arbeit bietet zudem einen Überblick über Hindernisse bei der Planung, insbesondere bei Elektrofahrzeugen mit PV-Antrieb. Auf Basis der vorgeschlagenen Kriterien werden geeignete Algorithmen zur Planung des Ladevorgangs von PV betriebenen EVs in intelligenten Microgrids empfohlen.

Abstract

Electric vehicles have a limited driving range before another charge is required. The number of charging stations available in South Africa is low, meaning that the few stations that are available need to be managed effectively. The purpose of this paper is to determine criteria for selecting appropriate algorithms for scheduling the charging of Electric Vehicles (EVs) in photovoltaic (PV) microgrids. Research articles were rigorously reviewed on how scheduling has been applied in other domains, especially timetabling problems, due to the similarities between timetabling scheduling and scheduling of EV charging. The paper also reports on a review of the constraints involved in scheduling, particularly in scheduling the charging of EVs powered by PVs. From the proposed criteria, appropriate scheduling algorithms are recommended for scheduling the EV charging in smart microgrids that are PV powered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babaei H et al (2015) A survey of approaches for university course timetabling problem. Comput Ind Eng 86:43–59

    Article  Google Scholar 

  2. Badoni RP et al (2014) A new hybrid algorithm for university course timetabling problem using events based on groupings of students. Comput Ind Eng 78:12–25

    Article  Google Scholar 

  3. Baghel M et al (2012) Survey of metaheuristic algorithms for combinatorial optimization. Int J Comput Appl 58(19)

    Article  Google Scholar 

  4. Baptiste P, Le Pape C (2005) Scheduling a single machine to minimize a regular objective function under setup constraints. Discret Optim 2(1):83–99

    Article  MathSciNet  MATH  Google Scholar 

  5. Benavoli A, Chisci L, Farina A, Ortenzi L, Zappa G (2006) Hard-constrained vs. soft-constrained parameter estimation. IEEE Trans Aerosp Electron Syst 42(4):1224–1239

    Google Scholar 

  6. Bertsekas DP, Castanon DA (2002) Rollout algorithms for stochastic scheduling problems. In: Proceedings of the 37th IEEE conference on decision and control. IEEE, pp 2143–2148

    Google Scholar 

  7. Bettinelli A, Cacchiani V, Roberti R, Toth P (2015) An overview of curriculum-based course timetabling. TOP 23(2):313–349

    Article  MathSciNet  MATH  Google Scholar 

  8. Blum C, Roli A (2003) Metaheuristics in combinatorial optimization. ACM Comput Surv 35(3):268–308

    Article  Google Scholar 

  9. Brucker P, Knust S(2012) Scheduling models. In: Complex scheduling

    Google Scholar 

  10. Carlsson F, Johansson-Stenman O (2003) Costs and benefits of electric vehicles: a 2010 perspective. J Transp Econ Policy 37:1, 1–1,28

    Google Scholar 

  11. Coello Coello CA (2016) Constraint-handling techniques used with evolutionary algorithms. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion – GECCO ’16 companion. ACM Press, New York, pp 563–587

    Google Scholar 

  12. Cong J, Bin L, Zhiru Z, Liu B, Zhang Z (2009) Scheduling with soft constraints. In: Computer-aided design – digest of technical papers, 2009. ICCAD 2009. IEEE/ACM international conference on. ACM Press, New York, pp 47–54

    Google Scholar 

  13. Department of Energy Developing infrastructure to charge plug-in electric vehicles. http://www.afdc.energy.gov/fuels/electricity_infrastructure.html

  14. Deris S et al (1999) Incorporating constraint propagation in genetic algorithm for university timetable planning. Eng Appl Artif Intell 12(3):241–253

    Article  Google Scholar 

  15. EDELSTEIN, S. How to maximize electric vehicle range (and minimize anxiety). https://www.digitaltrends.com/cars/electric-car-range-anxiety-explained/

  16. Goldin E et al (2013) Solar powered charge stations for electric vehicles. Environ Prog Sustain Energy 33(4):n/a–n/a

    Article  Google Scholar 

  17. Henry Obit J (2010) Developing novel meta-heuristic, hyper-heuristic and cooperative search for course timetabling problems

    Google Scholar 

  18. Hernández-Arauzo A et al (2015) Electric vehicle charging under power and balance constraints as dynamic scheduling. Comput Ind Eng 85:306–315

    Article  Google Scholar 

  19. Bullis K. Forget battery swapping: tesla aims to charge electric cars in five minutes – MIT technology review. https://www.technologyreview.com/s/516876/forget-battery-swapping-tesla-aims-to-charge-electric-cars-in-five-minutes/

  20. Kobayashi Y et al (2011) A route search method for electric vehicles in consideration of range and locations of charging stations. In: 2011 IEEE intelligent vehicles symposium (IV). pp 920–925 IEEE

    Google Scholar 

  21. Kokash N (2005) An introduction to heuristic algorithms. Dep Informatics Telecommun 1–8

    Google Scholar 

  22. Larminie J, Lowry J (2003) Electric vehicle technology explained. Wiley, London

    Book  Google Scholar 

  23. Lin Y et al (2016) Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing – tabu search algorithm to solve the symmetrical traveling salesman problem. Appl Soft Comput 49:937–952

    Article  Google Scholar 

  24. Ma Z et al (2013) Decentralized charging control of large populations of plug-in electric vehicles. IEEE Trans Control Syst Technol 21(1):67–78

    Article  Google Scholar 

  25. Madureira A, Ipp I (2005) Swarm intelligence for scheduling: a review. In: International conference on business sustainability. pp 1–8

    Google Scholar 

  26. Manda K et al (2012) Population based meta-heuristic techniques for solving optimization problems: a selective survey. Int J Emerg Technol Adv Eng 2(11):206–211. Website www.ijetae.com

    Google Scholar 

  27. Monette J-N (2010) Solving scheduling problems from high-level models. PhD thesis, Université catholique de Louvain, Louvain-la-Neuve

    Google Scholar 

  28. Oliva JA, Weihrauch C, Bertram T (2013) Model-based remaining driving range prediction in electric vehicles by using particle filtering and Markov chains. In: 2013 World electric vehicle symposium and exhibition (EVS27), Barcelona

    Google Scholar 

  29. Omara FA, Arafa MM (2010) Genetic algorithms for task scheduling problem. J Parallel Distrib Comput 70(1):13–22

    Article  MATH  Google Scholar 

  30. Pezzella F et al (2008) A genetic algorithm for the flexible job-shop scheduling problem. Comput Oper Res 35(10):3202–3212

    Article  MATH  Google Scholar 

  31. Pillay N (2014) A survey of school timetabling research. Ann Oper Res 218(1):261–293

    Article  MathSciNet  MATH  Google Scholar 

  32. Pinedo ML (2012) Overview of stochastic scheduling problems. In: Scheduling. Springer US, Boston, S 607–610

    Chapter  Google Scholar 

  33. Pinedo ML (2012) Overview of stochastic scheduling problems. In: Scheduling – theory, algorithms, and systems. Springer US, Boston, pp 607–610

    Google Scholar 

  34. Piotrowski AP et al (2017) Swarm intelligence and evolutionary algorithms: performance versus speed. Inf Sci (Ny) 384:34–85

    Article  MathSciNet  Google Scholar 

  35. Portela C et al (2015) OSCP – an open protocol for smart charging of electric vehicles. In: 23rd international conference on electricity distribution. Lyon, S 1–5

    Google Scholar 

  36. Salem H, Hassine AB (2015) Meeting scheduling based on swarm intelligence. Procedia Comput Sci 60:1081–1091

    Article  Google Scholar 

  37. Sean O’Kane. The White House announces a sweeping plan to increase EV charging stations – The Verge. https://www.theverge.com/2016/11/3/13507634/ev-charging-stations-white-house-obama-department-of-energy

  38. Sharma S, Srivastava L (2008) Prediction of transmission line overloading using intelligent technique. Appl Soft Comput 8(1):626–633

    Article  Google Scholar 

  39. Su W et al (2014) Stochastic energy sheduling in microgrids with intermittent renewable energy resources. IEEE Trans Smart Grid 5(4):1876–1883

    Article  Google Scholar 

  40. Thepphakorn T et al (2014) An ant colony based timetabling tool. Int J Prod Econ 149:131–144

    Article  Google Scholar 

  41. Tran TT, Dogru MK, Ozen U, Beck JC (2013) Scheduling a multi-cable electric vehicle charging facility. In: Vidal LC, Chien S, Rasconi R (eds) Proceedings of SPARK 2013 – scheduling and planning applications workshop, Rome, pp 20–26

    Google Scholar 

  42. Tuttle DP, Baldick R (2012) The evolution of plug-in electric vehicle-grid interactions. IEEE Trans Smart Grid 3(1):500–505

    Article  Google Scholar 

  43. UCSB Sustainabilty. UCSB electric vehicle charging stations. http://www.sustainability.ucsb.edu/ucsb-electric-vehicle-charging-stations/

  44. US Department of Energy (2016) Plug-In electric vehicle handbook for public charging station hosts

    Google Scholar 

  45. Vilím P (2007) Global constraints in scheduling. PhD thesis, Charles University. Prague, Czech Republic

    Google Scholar 

  46. Zambelli M et al (2006) Deterministic versus stochastic models for long term hydrothermal scheduling. In: 2006 IEEE Power Engineering Society General Meeting. p 7 pp. IEEE

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumisani Nyumbeka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nyumbeka, D., Wesson, J., Scholtz, B. (2019). Selecting Scheduling Algorithms for Charging of Electric Vehicles in Photovoltaic Powered Microgrids. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-25210-6_9

Download citation

Publish with us

Policies and ethics